Decomposition analysis of factors driving CO2 emissions in Chinese provinces based on production-theoretical decomposition analysis

2016 ◽  
Vol 84 (S1) ◽  
pp. 267-277 ◽  
Author(s):  
Liyun Chen ◽  
Qi Duan

2021 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
Souhir Abbes

In this paper, we use the Logarithmic Mean Divisia Index (LMDI) to apply decomposition analysis on Carbon Dioxide (CO2) emissions from transport systems in seven Eastern European countries over the period between 2005 and 2015. The results show that “economic activity” is the main factor responsible for CO2 emissions in all the countries in our sample. The second factor causing increase in CO2 emissions is the “fuel mix” by type and mode of transport. Modal share and energy intensity affect the growth of CO2 emissions but in a less significant way. Finally, only the “population” and “emission coefficient” variables slowed the growth of these emissions in all the countries, except for Slovenia, where the population variable was found to be responsible for the increase in CO2 emissions. These results not only contribute to advancing the existing literature but also provide important policy recommendations.



Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8006
Author(s):  
Kristiāna Dolge ◽  
Dagnija Blumberga

The manufacturing industry is often caught in the sustainability dilemma between economic growth targets and climate action plans. In this study, a Log-Mean Divisia Index (LMDI) decomposition analysis is applied to investigate how the amount of industrial energy-related CO2 emissions in Latvia has changed in the period from 1995 to 2019. The change in aggregate energy-related CO2 emissions in manufacturing industries is measured by five different factors: the industrial activity effect, structural change effect, energy intensity effect, fuel mix effect, and emission intensity effect. The decomposition analysis results showed that while there has been significant improvement in energy efficiency and decarbonization measures in industry, in recent years, the impact of the improvements has been largely offset by increased industrial activity in energy-intensive sectors such as wood processing and non-metallic mineral production. The results show that energy efficiency measures in industry contribute most to reducing carbon emissions. In the future, additional policies are needed to accelerate the deployment of clean energy and energy efficiency technologies.



Author(s):  
Hasan Rüstemoğlu ◽  
Sevin Uğural

There exists an important awareness for reduction of CO2 emissions to obtain a sustainable world. Together with this, there is a great deal of interest for decomposition analysis to see the accelerating and decelerating factors of CO2 emissions. The aim of this project is to decompose CO2 emissions in economic sectors for the two superpowers of Middle East, Iran and Turkey, over the time period between 1990 and 2010, for Turkey obtained a rapid growth performance in recent years and Iran which is the energy superpower of the world. Refined Laspeyres Index decomposition method and a consistent data gathered from the World Bank’s and UN’s databases have been used during the analysis. Five main sectors (agriculture, manufacturing, transportation, construction and other service sectors) and four main impacts (scale effect, composition effect, energy intensity effect and carbon intensity effect) have been considered to see the increasing and decreasing factors of CO2 emissions. Various interesting results are observed for both of the countries, for each of the economic sectors. Generally scale effect and energy intensity effect are the dominant impacts for all sectors of both countries. However composition effect and carbon intensity effect are also important contributors for economic activities of these two countries. Overall, our analysis showed that these two countries should pay attention for energy intensity and sustainable economic growth.



2015 ◽  
Vol 157 ◽  
pp. 905-917 ◽  
Author(s):  
Ajay Gambhir ◽  
Lawrence K.C. Tse ◽  
Danlu Tong ◽  
Ricardo Martinez-Botas


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 764 ◽  
Author(s):  
Jaruwan Chontanawat

ASEAN is a dynamic and diverse region which has experienced rapid urbanization and population growth. Their energy demand grew by 60% in the last 15 years. In 2013, about 3.6% of global greenhouse-gas emissions was emitted from this region and the share is expected to rise substantially. Hence, a better understanding of driving forces of the changes in CO2 emissions is important to tackle global climate change and develop appropriate policies. Using IPAT combined with variance analysis, this study aims to identify the main driving factors of CO2 emissions for ASEAN and four selected countries (Indonesia, Malaysia, Philippines and Thailand) during 1971–2013. The results show that population growth and economic growth were the main driving factors for increasing CO2 emissions for most of the countries. Fossil fuels play an important role in increasing CO2 emissions, however the growth in emissions was compensated by improved energy efficiency and carbon intensity of fossil energy. The results imply that to decouple energy use from high levels of emissions is important. Proper energy management through fuel substitution and decreasing emission intensity through technological upgrades have considerable potential to cut emissions.



2016 ◽  
Vol 164 ◽  
pp. 795-804 ◽  
Author(s):  
Ana Karmela Sumabat ◽  
Neil Stephen Lopez ◽  
Krista Danielle Yu ◽  
Han Hao ◽  
Richard Li ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document