Extreme sea levels at Rapa Nui (Easter Island) during intense atmospheric rivers

2021 ◽  
Author(s):  
Matías Carvajal ◽  
Patricio Winckler ◽  
René Garreaud ◽  
Felipe Igualt ◽  
Manuel Contreras-López ◽  
...  
2019 ◽  
Vol 73 (1) ◽  
pp. 163 ◽  
Author(s):  
Sergio A. Carrasco ◽  
Erika Meerhoff ◽  
Beatriz Yannicelly ◽  
Christian M. Ibáñez

2017 ◽  
Author(s):  
Julieta Martinelli ◽  
◽  
Sandra Gordillo ◽  
Sandra Gordillo ◽  
Maria Carla De Aranzamendi ◽  
...  

2021 ◽  
Vol 169 ◽  
pp. 112535
Author(s):  
Martin Thiel ◽  
Bárbara Barrera Lorca ◽  
Luis Bravo ◽  
Iván A. Hinojosa ◽  
Hugo Zeballos Meneses

2021 ◽  
Vol 13 (13) ◽  
pp. 2531
Author(s):  
Robert J. DiNapoli ◽  
Carl P. Lipo ◽  
Timothy S. de Smet ◽  
Terry L. Hunt

Submarine groundwater discharge (SGD) is an important component of many coastal environments and hydrologic processes, providing sources of nutrients to marine ecosystems, and potentially, an important source of fresh water for human populations. Here, we use a combination of unpiloted aerial systems (UAS) thermal infrared (TIR) imaging and salinity measurements to characterize SGD on the remote East Polynesian island of Rapa Nui (Easter Island, Chile). Previous research has shown that coastal freshwater seeps are abundant on Rapa Nui and strongly associated with the locations of ancient settlement sites. We currently lack, however, information on the differential magnitude or quality of these sources of fresh water. Our UAS-based TIR results from four locations on Rapa Nui suggest that locations of variably-sized SGD plumes are associated with many ancient settlement sites on the island and that these water sources are resilient to drought events. These findings support previous work indicating that ancient Rapa Nui communities responded to the inherent and climate-induced hydrological challenges of the island by focusing on these abundant and resilient freshwater sources. Our results highlight the efficacy of using UAS-based TIR for detecting relatively small SGD locations and provide key insights on the potential uses of these water sources for past and current Rapa Nui communities.


2021 ◽  
pp. 103529
Author(s):  
Jean-Philippe Belliard ◽  
Luis Dominguez-Granda ◽  
John A. Ramos-Veliz ◽  
Andrea M. Rosado-Moncayo ◽  
Jorge Nath ◽  
...  

2021 ◽  
Author(s):  
Krešimir Ruić ◽  
Jadranka Šepić ◽  
Maja Karlović ◽  
Iva Međugorac

<p>Extreme sea levels are known to hit the Adriatic Sea and to occasionally cause floods that produce severe material damage. Whereas the contribution of longer-period (T > 2 h) sea-level oscillations to the phenomena has been well researched, the contribution of the shorter period (T < 2 h) oscillations is yet to be determined. With this aim, data of 1-min sampling resolution were collected for 20 tide gauges, 10 located at the Italian (north and west) and 10 at the Croatian (east) Adriatic coast. Analyses were done on time series of 3 to 15 years length, with the latest data coming from 2020, and with longer data series available for the Croatian coast. Sea level data were thoroughly checked, and spurious data were removed. </p><p>For each station, extreme sea levels were defined as events during which sea level surpasses its 99.9 percentile value. The contribution of short-period oscillations to extremes was then estimated from corresponding high-frequency (T < 2 h) series. Additionally, for four Croatian tide gauge stations (Rovinj, Bakar, Split, and Dubrovnik), for period of 1956-2004, extreme sea levels were also determined from the hourly sea level time series, with the contribution of short-period oscillations visually estimated from the original tide gauge charts.  </p><p>Spatial and temporal distribution of contribution of short-period sea-level oscillations to the extreme sea level in the Adriatic were estimated. It was shown that short-period sea-level oscillation can significantly contribute to the overall extremes and should be considered when estimating flooding levels. </p>


Easter Island ◽  
2003 ◽  
pp. 29-36
Author(s):  
J. T. Tanacredi ◽  
K. Buckley ◽  
T. Savage ◽  
B. Cliver
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document