Propagation of Transient Acoustic Waves in Layered Porous Media: Fractional Equations for the Scattering Operators

2004 ◽  
Vol 38 (1-4) ◽  
pp. 181-190 ◽  
Author(s):  
Claude Depollier ◽  
Zine El Abidine Fellah ◽  
Mohamed Fellah
2007 ◽  
Vol 5 ◽  
pp. 169-175
Author(s):  
V.L. Dmitriev ◽  
Е.А. Ponomareva

The paper considers the processes of reflection and transmission acoustic waves at the interface between two porous media, saturated liquid or gas. The cases of a porous medium whose layers have the same porosity, but are saturated with different fluids. Based The dispersion relation and the conditions at the interface between the media are obtained reflection and transmission coefficients. The possibility determination of the parameters of the porous material and its saturating fluid based on the signal reflected from the interface.


2011 ◽  
Vol 14 (9) ◽  
pp. 761-776 ◽  
Author(s):  
Hamid Emami Meybodi ◽  
Riyaz Kharrat ◽  
Benyamin Yadali Jamaloei

2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


2010 ◽  
Vol 108 (1) ◽  
pp. 014909 ◽  
Author(s):  
Z. E. A Fellah ◽  
N. Sebaa ◽  
M. Fellah ◽  
F. G. Mitri ◽  
E. Ogam ◽  
...  

2011 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Muhammad Taufiq Fathaddin ◽  
Asri Nugrahanti ◽  
Putri Nurizatulshira Buang ◽  
Khaled Abdalla Elraies

In this paper, simulation study was conducted to investigate the effect of spatial heterogeneity of multiple porosity fields on oil recovery, residual oil and microemulsion saturation. The generated porosity fields were applied into UTCHEM for simulating surfactant-polymer flooding in heterogeneous two-layered porous media. From the analysis, surfactant-polymer flooding was more sensitive than water flooding to the spatial distribution of multiple porosity fields. Residual oil saturation in upper and lower layers after water and polymer flooding was about the same with the reservoir heterogeneity. On the other hand, residual oil saturation in the two layers after surfactant-polymer flooding became more unequal as surfactant concentration increased. Surfactant-polymer flooding had higher oil recovery than water and polymer flooding within the range studied. The variation of oil recovery due to the reservoir heterogeneity was under 9.2%.


Sign in / Sign up

Export Citation Format

Share Document