scholarly journals Erratum to: Dynamic probabilistic design approach of high-pressure turbine blade-tip radial running clearance

2016 ◽  
Vol 86 (1) ◽  
pp. 225-225
Author(s):  
Cheng-Wei Fei ◽  
Yat-Sze Choy ◽  
Dian-Yin Hu ◽  
Guang-Chen Bai ◽  
Wen-Zhong Tang
2016 ◽  
Vol 86 (1) ◽  
pp. 205-223 ◽  
Author(s):  
Cheng-Wei Fei ◽  
Yat-Sze Choy ◽  
Dian-Yin Hu ◽  
Guang-Chen Bai ◽  
Wen-Zhong Tang

Author(s):  
Cheng-Wei Fei ◽  
Wen-Zhong Tang ◽  
Guang-chen Bai ◽  
Zhi-Ying Chen

Around the engineering background of the probabilistic design of high-pressure turbine (HPT) blade-tip radial running clearance (BTRRC) which conduces to the high-performance and high-reliability of aeroengine, a distributed collaborative extremum response surface method (DCERSM) was proposed for the dynamic probabilistic analysis of turbomachinery. On the basis of investigating extremum response surface method (ERSM), the mathematical model of DCERSM was established. The DCERSM was applied to the dynamic probabilistic analysis of BTRRC. The results show that the blade-tip radial static clearance δ = 1.82 mm is advisable synthetically considering the reliability and efficiency of gas turbine. As revealed by the comparison of three methods (DCERSM, ERSM, and Monte Carlo method), the DCERSM reshapes the possibility of the probabilistic analysis for turbomachinery and improves the computational efficiency while preserving computational accuracy. The DCERSM offers a useful insight for BTRRC dynamic probabilistic analysis and optimization. The present study enrichs mechanical reliability analysis and design theory.


2013 ◽  
Vol 572 ◽  
pp. 551-554
Author(s):  
Wen Zhong Tang ◽  
Cheng Wei Fei ◽  
Guang Chen Bai

For the probabilistic design of high-pressure turbine (HPT) blade-tip radial running clearance (BTRRC), a distributed collaborative response surface method (DCRSM) was proposed, and the mathematical model of DCRSM was established. From the BTRRC probabilistic design based on DCRSM, the static clearance δ=1.865 mm is demonstrated to be optimal for the BTRRC design considering aeroengine reliability and efficiency. Meanwhile, DCRSM is proved to be of high accuracy and efficiency in the BTRRC probabilistic design. The present study offers an effective way for HPT BTRRC dynamic probabilistic design and provides also a promising method for the further probabilistic optimal design of complex mechanical system.


Author(s):  
Brian R. Green ◽  
John W. Barter ◽  
Charles W. Haldeman ◽  
Michael G. Dunn

The unsteady aero-dynamics of a single-stage high-pressure turbine blade operating at design corrected conditions has been the subject of a thorough study involving detailed measurements and computations. The experimental configuration consisted of a single-stage high-pressure turbine and the adjacent, downstream, low-pressure turbine nozzle row. All three blade-rows were instrumented at three spanwise locations with flush-mounted, high frequency response pressure transducers. The rotor was also instrumented with the same transducers on the blade tip and platform and the stationary shroud was instrumented with pressure transducers at specific locations above the rotating blade. Predictions of the time-dependent flow field around the rotor were obtained using MSU-TURBO, a 3D, non-linear, computational fluid dynamics (CFD) code. Using an isolated blade-row unsteady analysis method, the unsteady surface pressure for the high-pressure turbine rotor due to the upstream high-pressure turbine nozzle was calculated. The predicted unsteady pressure on the rotor surface was compared to the measurements at selected spanwise locations on the blade, in the recessed cavity, and on the shroud. The rig and computational models included a flat and recessed blade tip geometry and were used for the comparisons presented in the paper. Comparisons of the measured and predicted static pressure loading on the blade surface show excellent correlation from both a time-average and time-accurate standpoint. This paper concentrates on the tip and shroud comparisons between the experiments and the predictions and these results also show good correlation with the time-resolved data. These data comparisons provide confidence in the CFD modeling and its ability to capture unsteady flow physics on the blade surface, in the flat and recessed tip regions of the blade, and on the stationary shroud.


Author(s):  
P Vass ◽  
T Arts

The current contribution reports on the validation and analysis of three-dimensional computational results of the flow around four distinct high-pressure turbine blade tip geometries (TG1, 2, 3, and 4 hereinafter), taking into account the effect of the entire internal cooling setup inside the blade, at design exit Mach number: M = 0.8, and high exit Reynolds number: Re C = 900 000. Three of the four geometries represent different tip design solutions – TG1: full squealer rim; TG2: single squealer on the suction side; TG3: partial suction and pressure side squealer, and one (TG4) models TG1 in worn condition. This article provides a comparison between the different geometries from the aerodynamic point of view, analyses the losses, and evaluates the distinct design solutions. An assessment of the effect of the uneven rubbing of the blade tip was performed as well. TG1 was found to be the top performer followed by TG3 and TG2. According to the investigations, the effect of rubbing increased the kinetic loss coefficient by 10–15 per cent.


2004 ◽  
Vol 127 (4) ◽  
pp. 736-746 ◽  
Author(s):  
Brian R. Green ◽  
John W. Barter ◽  
Charles W. Haldeman ◽  
Michael G. Dunn

The unsteady aero-dynamics of a single-stage high-pressure turbine blade operating at design corrected conditions has been the subject of a thorough study involving detailed measurements and computations. The experimental configuration consisted of a single-stage high-pressure turbine and the adjacent, downstream, low-pressure turbine nozzle row. All three blade-rows were instrumented at three spanwise locations with flush-mounted, high-frequency response pressure transducers. The rotor was also instrumented with the same transducers on the blade tip and platform and the stationary shroud was instrumented with pressure transducers at specific locations above the rotating blade. Predictions of the time-dependent flow field around the rotor were obtained using MSU-TURBO, a three-dimensional (3D), nonlinear, computational fluid dynamics (CFD) code. Using an isolated blade-row unsteady analysis method, the unsteady surface pressure for the high-pressure turbine rotor due to the upstream high-pressure turbine nozzle was calculated. The predicted unsteady pressure on the rotor surface was compared to the measurements at selected spanwise locations on the blade, in the recessed cavity, and on the shroud. The rig and computational models included a flat and recessed blade tip geometry and were used for the comparisons presented in the paper. Comparisons of the measured and predicted static pressure loading on the blade surface show excellent correlation from both a time-average and time-accurate standpoint. This paper concentrates on the tip and shroud comparisons between the experiments and the predictions and these results also show good correlation with the time-resolved data. These data comparisons provide confidence in the CFD modeling and its ability to capture unsteady flow physics on the blade surface, in the flat and recessed tip regions of the blade, and on the stationary shroud.


Author(s):  
Stefano Caloni ◽  
Shahrokh Shahpar

The design of a high pressure turbine blade is a challenging task requiring multiple disciplines to be solved simultaneously. Most recently, conjugate analyses are being developed to tackle such a problem; they are able to resolve both the fluid dynamics in a turbine passage and the thermal distribution in the solid part of the component. In this paper, the in-house Hydra CFD solver is used to analyse a high pressure shroudless turbine blade for a modern jet engine. The turbine is internally cooled and a Thermal Barrier Coating (TBC) is applied on the aerofoil surface. The coupling technique used at the interface in the presence of the TBC is described. The flow features at the tip of the turbine blade are the main focus of this study. Four different tip configurations are analysed. A flat tip and a squealer tip are chosen as reference designs; however the effects of opening the Trailing Edge (TE) on the Suction Side (SS) and the Pressure Side (PS) are also investigated. Both a cooled and an uncooled configuration of the turbine blade are analysed and the effect of the cooling flow on the over tip leakage is studied. Finally, conjugate analyses for the cooled turbine blades are used to predict the temperature reached by the different tip designs. The design with an opened TE on the SS shows a significant aerodynamic improvement over the others without increasing the temperature the tip has to withstand in operation.


Author(s):  
Steven G. Gegg ◽  
Nathan J. Heidegger ◽  
Ronald A. Mikkelson

High pressure turbine blades are exposed to an extreme high temperature environment due to increasing turbine inlet temperature. High heat fluxes are likely on the blade pressure surface. Other regions, such as the trailing edge and blade tip may be difficult to cool uniformly. Unshrouded blades present an additional challenge due to the pressure driven transport of hot gas across the blade tip. The blade tip region is therefore prone to severe thermal stress, fatigue and oxidation. In order to develop effective cooling methods, designers require detailed flow and heat transfer information. This paper reports on computational aerodynamics and heat transfer studies for an unshrouded high pressure turbine blade. The emphasis is placed on the application of appropriate 3-D models for the prediction of airfoil surface temperatures. Details of the film cooling model, boundary conditions and data exchange with heat transfer models are described. The analysis approach has been refined for design use to provide timely and accurate results. Film cooling designs are to be tailored for the best coverage of the blade tip region. Designs include near-tip pressure side films and blade tip cooling holes. Hole placement and angle are investigated to achieve the best coolant coverage on the blade tip. Analytical results are compared to a thermal paint test on engine hardware. In addition to film cooling strategies, other aerodynamic/heat transfer design approaches are discussed to address the cooling requirements for an unshrouded blade.


2016 ◽  
Vol 30 (12) ◽  
pp. 5529-5538 ◽  
Author(s):  
Jinuk Kim ◽  
Young Seok Kang ◽  
Dongwha Kim ◽  
Jihyeong Lee ◽  
Bong Jun Cha ◽  
...  

2017 ◽  
Vol 31 (1) ◽  
pp. 479-479
Author(s):  
Jinuk Kim ◽  
Young Seok Kang ◽  
Dongwha Kim ◽  
Jihyeong Lee ◽  
Bong Jun Cha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document