The higher resistance to chilling stress in adaxial side of Rumex K-1 leaves is accompanied with higher photochemical and non-photochemical quenching

2007 ◽  
Vol 45 (4) ◽  
Author(s):  
P. M. Li ◽  
P. Fang ◽  
W. B. Wang ◽  
H. Y. Gao ◽  
T. Peng
2017 ◽  
Vol 5 ◽  
pp. 1118-1123 ◽  
Author(s):  
Rositsa Cholakova-Bimbalova ◽  
Andon Vassilev

: In the climate conditions of Bulgaria, early stages of maize plants development often go under suboptimal temperatures. Chilling stress is known to cause different physiological disturbances in young maize plants during the transition period from heterotrophic to autotrophic nutrition. However, the effect of chilling may differ among maize hybrids. Photosynthetic performance could be a good indicator for the hybrid tolerance to chilling. The aim of our study was to evaluate the tolerance of young maize plants from two hybrids – the new Bulgarian hybrid - Kneza 307 and the hybrid P9528 using as criteria the changes in their photosynthetic performance.Plants at the third leaf stage were exposed for seven days to chilling stress. At the end of the experimental period, growth, leaf lipid peroxidation, and several photosynthetic parameters were measured. We found that chilling stress reduced the fresh mass accumulation, increased lipid peroxidation, diminished net photosynthetic rate and chlorophyll content, and enhanced non-photochemical quenching of chlorophyll fluorescence. Although the responses of both hybrids were similar, some specificity were observed and discussed.


HortScience ◽  
2011 ◽  
Vol 46 (6) ◽  
pp. 895-900 ◽  
Author(s):  
Julián Miralles-Crespo ◽  
Juan Antonio Martínez-López ◽  
José Antonio Franco-Leemhuis ◽  
Sebastián Bañón-Arias

Physiological and biochemical indicators that reflect the responses of plants to chilling stress could be useful for identifying plant damage caused by freezing or other stresses. The objective of this study was to determine any relationship between changes in chlorophyll fluorescence and the appearance of visual symptoms resulting from freezing temperatures in two cultivars of oleander. In the least frost-sensitive cultivar (yellow oleander), freezing temperatures (–4 °C for 3 h) did not produce changes in the photochemical parameters. In the more frost-sensitive cultivar (pink oleander), non-photochemical quenching (NPQ) and the maximum photochemical efficiency of photosystem II (Fv/Fm) decreased after the same freezing treatment. The first of these potential indicators remained low, whereas the second steadily recovered during the 4 months after freezing simulation. The results suggest that measuring chlorophyll fluorescence may provide a rapid method for assessing freezing injury in oleander.


2011 ◽  
Vol 51 (No. 5) ◽  
pp. 206-212 ◽  
Author(s):  
K. Kosová ◽  
D. Haisel ◽  
I. Tichá

The effect of chilling on light dependence of photosynthetic and chlorophyll a fluorescence characteristics in two maize genotypes CE 704 and CE 810 grown in a glasshouse during spring and autumn was studied. In spring, the net photosynthetic rate (P<sub>N</sub>) of CE 704 plants was not affected by chilling under moderate irradiance but it was strongly affected under a saturating one. This indicates that efficiency of photosynthetic apparatus was not affected by chilling but its capacity was decreased. Contrary to CE 704, CE 810 plants were not affected by chilling under saturating irradiance. In autumn, CE 704 plants adapted to chilling and no statistically significant differencies in P<sub>N</sub> and Fv/Fm between chilled and control plants in the whole range of irradiance were found. Enhanced activity of non-photochemical quenching (NPQ) in chilled CE 704 plants under saturating irradiance corresponded with an increased level of xanthophyll cycle pigments and an increased deepoxidation state of these pigments.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Yingting Zhang ◽  
Qianyu Zhu ◽  
Meng Zhang ◽  
Zhenhao Guo ◽  
Junjie Yang ◽  
...  

Low temperature (LT) is an important abiotic factor affecting plant survival, growth and distribution. The response of Cryptomeria fortunei (Chinese cedar) to LT is not well known, limiting its application in production and ornamental value. In this study, we first screened ten clones (#3, #25, #32, #42, #54, #57, #68, #66, #74, #X1), originating from five different locations in China, for their degrees of cold resistance. We then selected the two showing the highest (#32) and lowest (#42) cold resistance to see the physiological and morphological response of different cold-resistant C. fortunei clones to LT. We found that the electrolyte leakage of all ten clones increased strongly between 0 and −8 °C, while below −8 or between 4 and 0 °C did not yield additional increases. Under cold stress, clones #32 and #42 showed different degrees of needle browning. From 25 to −20 °C, maximum and effective quantum yields of photosystem II (Fv/Fm and YII) and photochemical and non-photochemical quenching (qP and NPQ) decreased continuously in two clones with decreasing temperature, where #42 was more strongly affected compared with #32. The chlorophyll content first decreased significantly to the lowest from 25 to −12 °C, then increased significantly at −16/−20 °C compared with −12 °C. We observed changes in needle cellular ultrastructure at −8 °C, with chloroplasts of #32 swelling, while those of #42 were destroyed. Correlation analysis indicated that needle browning and chlorophyll fluorescence were closely related to temperature, and cellular ultrastructure changed notably around semi-lethal temperature (LT50), which can be used as physiological indicators for the identification of cold resistance. We found a clear difference in cold tolerance between clones of #32 and #42, with #32 being more tolerant, which can be exploited in breeding programs. We conclude that strongly cold-resistant clones have more stable physiological states and a wider adaptability to LT compared with weak ones.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541a-541
Author(s):  
Lailiang Cheng ◽  
Leslie H. Fuchigami ◽  
Patrick J. Breen

Bench-grafted Fuji/M26 apple trees were fertigated with different concentrations of nitrogen by using a modified Hoagland solution for 6 weeks, resulting in a range of leaf N from 1.0 to 4.3 g·m–2. Over this range, leaf absorptance increased curvilinearly from 75% to 92.5%. Under high light conditions (1500 (mol·m–2·s–1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range except for a slight drop at the lower end. As leaf N increased, non-photochemical quenching under high light declined and there was a corresponding increase in the efficiency with which the absorbed photons were delivered to open PSII centers. Photochemical quenching coefficient decreased significantly at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially used for free radical formation was estimated to be about 10% regardless of the leaf N status. It was concluded that increased thermal dissipation protected leaves from photo-oxidation as leaf N declined.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1916
Author(s):  
Myriam Canonico ◽  
Grzegorz Konert ◽  
Aurélie Crepin ◽  
Barbora Šedivá ◽  
Radek Kaňa

Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0–30 min), (2) intermediate phase (30–120 min), and (3) slow acclimation phase (120–360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ–carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.


Author(s):  
Franco V. A. Camargo ◽  
Federico Perozeni ◽  
Gabriel de la Cruz Valbuena ◽  
Luca Zuliani ◽  
Samim Sardar ◽  
...  

Polar Biology ◽  
2021 ◽  
Author(s):  
Deborah Bozzato ◽  
Torsten Jakob ◽  
Christian Wilhelm ◽  
Scarlett Trimborn

AbstractIn the Southern Ocean (SO), iron (Fe) limitation strongly inhibits phytoplankton growth and generally decreases their primary productivity. Diatoms are a key component in the carbon (C) cycle, by taking up large amounts of anthropogenic CO2 through the biological carbon pump. In this study, we investigated the effects of Fe availability (no Fe and 4 nM FeCl3 addition) on the physiology of Chaetoceros cf. simplex, an ecologically relevant SO diatom. Our results are the first combining oxygen evolution and uptake rates with particulate organic carbon (POC) build up, pigments, photophysiological parameters and intracellular trace metal (TM) quotas in an Fe-deficient Antarctic diatom. Decreases in both oxygen evolution (through photosynthesis, P) and uptake (respiration, R) coincided with a lowered growth rate of Fe-deficient cells. In addition, cells displayed reduced electron transport rates (ETR) and chlorophyll a (Chla) content, resulting in reduced cellular POC formation. Interestingly, no differences were observed in non-photochemical quenching (NPQ) or in the ratio of gross photosynthesis to respiration (GP:R). Furthermore, TM quotas were measured, which represent an important and rarely quantified parameter in previous studies. Cellular quotas of manganese, zinc, cobalt and copper remained unchanged while Fe quotas of Fe-deficient cells were reduced by 60% compared with High Fe cells. Based on our data, Fe-deficient Chaetoceros cf. simplex cells were able to efficiently acclimate to low Fe conditions, reducing their intracellular Fe concentrations, the number of functional reaction centers of photosystem II (RCII) and photosynthetic rates, thus avoiding light absorption rather than dissipating the energy through NPQ. Our results demonstrate how Chaetoceros cf. simplex can adapt their physiology to lowered assimilatory metabolism by decreasing respiratory losses.


Sign in / Sign up

Export Citation Format

Share Document