maximum photochemical efficiency
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12741
Author(s):  
Ruier Zeng ◽  
Jing Cao ◽  
Xi Li ◽  
Xinyue Wang ◽  
Ying Wang ◽  
...  

Fifteen peanut varieties at the pod filling stage were exposed to waterlogging stress for 7 days, the enzyme activities and fluorescence parameters were measured after 7 days of waterlogging and drainage. The waterlogging tolerance and recovery capability of varieties were identified. After waterlogging, waterlogging tolerance coefficient (WTC) of relative electrolyte linkage (REL), malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity, non-photochemical quenching (NPQ) and photochemical quenching (qL) of leaves of most peanut varieties were increased, while the WTC of the soil and plant analysis development (SPAD) value, PS II actual quantum yield (ΦPS II), maximum photochemical efficiency (Fv/Fm) were decreased. After drainage, the WTC of REL, MDA content, SOD and CAT activity of leaves were decreased compared with that of after waterlogging, but these indicators of a few cultivars were increased. ΦPS II, Fv/Fm and qL can be used as important indexes to identify waterlogging recovery capability. There was a significant negative correlation between recovery capability and the proportion of reduction in yield, while no significant correlation was found between waterlogging tolerance and the proportion of reduction in yield. Therefore, it is recommended to select varieties with high recovery capability and less pod number reduction under waterlogging in peanut breeding and cultivation.


2021 ◽  
Vol 22 (20) ◽  
pp. 11288
Author(s):  
Qilei Zhang ◽  
Jundong Huang ◽  
Weiqian Ke ◽  
Minling Cai ◽  
Guangxin Chen ◽  
...  

Sphagneticola trilobata is an invasive plant in South China. A hybrid between S. trilobata and Sphagneticola calendulacea (a native related species) has also been found in South China. The drought resistance of S. calendulacea, S. trilobata and their hybrid was studied in this paper. Under drought stress, the leaves of S. trilobata synthesized more abscisic acid (ABA) than those of the other species to reduce stomatal opening and water loss. The activities of antioxidant enzymes were the highest in S. trilobata and the lowest in S. calendulacea. The leaves of S. calendulacea suffered the most serious damage, and their maximum photochemical efficiency was the lowest. RNA-sequencing ware used to analyze the expression levels of genes in ABA, antioxidant enzyme, sugar and proline synthesis and photosynthesis pathways. Further real-time PCR detection verified the RNA-sequence results, and the results were in accordance with the physiological data. The results showed that S. trilobata was the most drought tolerant, and the drought tolerance of the hybrid did not show heterosis but was higher than S. calendulacea. Therefore, compared with S. trilobata and the hybrid, the population number and distribution of S. calendulacea may be less in arid areas.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 331
Author(s):  
Pengyu Zhou ◽  
Ji Qian ◽  
Weidong Yuan ◽  
Xin Yang ◽  
Bao Di ◽  
...  

As a result of the continuous global warming in recent years, the average annual number of rain days in China has been on the decline, while the number of rainstorm days has gradually increased. These conditions make it extremely easy to form a waterlogging environment, which has an adverse impact on plant growth and development. In many apple-producing areas in China, apples are subject to severe flooding during planting. In this study, two-year-old apple rootstock M9T337 was used to explore the effects of interval water stress on the morphological and physiological parameters of apple leaves. The purpose was to determine the plant’s adaptability to waterlogged environments and provide theoretical reference for management and maintenance after waterlogging. The results showed that the effect on flooded (T2) on apple stock was greater than that of waterlogged (T1), Short-term (7 d) waterlogging (T1) did not affect the growth of seedlings but was conducive to the accumulation of dry matter. Furthermore, the initial stress was be imprinted on the plants, which could directly affect their response to later stress. The results of principal component analysis (PCA) revealed that PC1, PC2, and PC3 explained 26.92%, 17.46%, and 13.03% of the physiological changes under water stress, respectively. By calculating the weight of each indicator, we concluded that high-frequency resistance r, relative chlorophyll content (SPAD) and maximum photochemical efficiency Fv/Fm are important parameters for apple rootstocks affected by water stress.


2020 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance, and in recent years, LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to different wavelengths of light. Thus, the influence of artificial light on photosynthesis requires further investigation to provide theoretical guidelines for the light environments used in industrial crop production. In this study, we tested the effects of different LEDs (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m 2 ·s) on the growth, development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion ( Allium fistulosum L.) plants. Results: Plants in the W and B treatments had significantly higher height, leaf area, and fresh weight than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate ( P n ) in the W treatment were significantly higher than those in the monochromatic light treatments, the transpiration rate ( E ) and stomatal conductance ( G s ) were the highest in the B treatment, and the intercellular CO 2 concentration ( C i ) was the highest in the Y treatment. The non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, but the other chlorophyll fluorescence characteristics differed among treatments in the following order: W > B > R > G > Y. This includes the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv′/Fm′), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR). Finally, the leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: White and blue light significantly improved the photosynthetic efficiency of Welsh onions, whereas yellow light reduced the photosynthetic efficiency.


2020 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance, and in recent years, LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to different wavelengths of light. Thus, the influence of artificial light on photosynthesis requires further investigation to provide theoretical guidelines for the light environments used in industrial crop production. In this study, we tested the effects of different LEDs (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m 2 ·s) on the growth, development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion ( Allium fistulosum L.) plants. Results: Plants in the W and B treatments had significantly higher height, leaf area, and fresh weight than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate ( P n ) in the W treatment were significantly higher than those in the monochromatic light treatments, the transpiration rate ( E ) and stomatal conductance ( G s ) were the highest in the B treatment, and the intercellular CO 2 concentration ( C i ) was the highest in the Y treatment. The non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, but the other chlorophyll fluorescence characteristics differed among treatments in the following order: W > B > R > G > Y. This includes the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv′/Fm′), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR). Finally, the leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: White and blue light significantly improved the photosynthetic efficiency of Welsh onions, whereas yellow light reduced the photosynthetic efficiency.


2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to theirphotosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the sama photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. Results: The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic ratein the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract Background: The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. Results: The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate (Pn) in the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. Conclusions: In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


2019 ◽  
Author(s):  
Song Gao ◽  
Xuena Liu ◽  
Ying Liu ◽  
Bili Cao ◽  
Zijing Chen ◽  
...  

Abstract The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance. Because of this, in recent years LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to light quality. The influence of light quality on photosynthesis needs to be further explored to provide theoretical guidance for the adjustment of the light environment in industrial crop production. This study tested the effects of different qualities of LED lighting (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photosynthetic photon flux density (300 μmol/m2·s) on the growth and development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. The results showed that the plant height, leaf area, and fresh weight of plants in the W and B treatments were significantly higher than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate (Pn) in the W treatment were significantly higher than those in the monochromatic light treatments, while the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. Among the chlorophyll fluorescence characteristics tested, the non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, while the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR) all differed among treatments in the following order: W > B > R > G > Y. Both leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. In summary, in addition to W light, B light significantly improved the photosynthetic efficiency of Welsh onion, whereas Y light significantly reduced the photosynthetic efficiency of this plant.


2019 ◽  
Vol 18 (3) ◽  
pp. 35-43
Author(s):  
Mariusz Szmagara ◽  
Krystyna Pudelska ◽  
Wojciech Durlak ◽  
Barbara Marcinek ◽  
Kamila Rojek

Striving to intensify horticultural production, new and more effective bio-preparations are being sought to stimulate plant growth and development. Bio-algeen S90 is a natural agent based on sea algae, the high bi- ological activity of which results from the high content of natural growth regulators. The aim of the study was to verify the influence of Bio-algeen S90 on the growth, morphological characteristics and chlorophyll fluorescence of Rosa multiflora seedlings. The bio-preparation was applied one, two and three times at con- centrations: 0.1, 0.2, 0.4 and 0.6 mg.dm−3. Following parameters were measured to evaluate the response of plants to the bio-preparation: F0 – initial fluorescence, Fm – maximal fluorescence in the dark-adapted state, Fv/Fm – maximum photochemical efficiency of PSII. All concentrations of the bio-preparation and frequency of its application stimulated the number of shoots in a bush, the length of shoots and the diameter of the root crown of plants intended for budding. The most beneficial was the two-fold bio-preparation application at a concentration of 0.4 mg.dm–3. Bio-algeen also positively influenced the chlorophyll fluorescence parame- ters. The highest mean F0 and Fm values were recorded with the two-fold preparation treatment. There was no significant effect of the bio-preparation on the Fv/Fm index, which was within the range of 0.75–0.66.


2018 ◽  
Vol 28 (4) ◽  
pp. 476-480 ◽  
Author(s):  
Chenping Xu ◽  
Beiquan Mou

Chitosan has become of interest as a crop biostimulant suitable for use in sustainable agriculture since it is biocompatible, biodegradable, environmentally friendly, and readily available in large quantity. Short-term (35 d after transplanting) effects of chitosan, applied as a soil amendment at 0%, 0.05%, 0.10%, 0.15%, 0.20%, or 0.30% (w/w), on lettuce (Lactuca sativa) growth, chlorophyll fluorescence, and gas exchange were evaluated in a growth chamber study. Chitosan at 0.05%, 0.10%, and 0.15% increased leaf area from 674 to 856, 847, and 856 cm2, and leaf fresh weight from 28.6 to 39.4, 39.1, and 39.8 g, respectively. Only chitosan at 0.05% and 0.10% increased leaf dry weight from 3.42 to 4.37 and 4.35 g, respectively, while chitosan at 0.30% decreased leaf number, area, fresh and dry weight. Chitosan at 0.10%, 0.15%, 0.20%, and 0.30% increased leaf chlorophyll index from 29.8 to 34.4, 35.4, 37.5, and 41.4, respectively. Chitosan at 0.20% and 0.30% increased leaf maximum photochemical efficiency and photochemical yield, and chitosan at 0.10%, 0.15% 0.20%, and 0.30% increased leaf electron transport rate. Leaf photosynthesis rate and stomatal conductance (gS) increased from 9.3 to 12.7, 14.0, and 16.6 μmol·m−2·s−1 carbon dioxide, and from 0.134 to 0.183, 0.196, and 0.231 mol·m−2·s−1, under chitosan at 0.15%, 0.20%, and 0.30%, respectively. The results indicated that chitosan, at appropriate application rates, enhanced lettuce growth, and might have potential to be used for sustainable production of lettuce.


Sign in / Sign up

Export Citation Format

Share Document