scholarly journals Individual Cryptomeria fortunei Hooibrenk Clones Show Varying Degrees of Chilling Stress Resistance

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Yingting Zhang ◽  
Qianyu Zhu ◽  
Meng Zhang ◽  
Zhenhao Guo ◽  
Junjie Yang ◽  
...  

Low temperature (LT) is an important abiotic factor affecting plant survival, growth and distribution. The response of Cryptomeria fortunei (Chinese cedar) to LT is not well known, limiting its application in production and ornamental value. In this study, we first screened ten clones (#3, #25, #32, #42, #54, #57, #68, #66, #74, #X1), originating from five different locations in China, for their degrees of cold resistance. We then selected the two showing the highest (#32) and lowest (#42) cold resistance to see the physiological and morphological response of different cold-resistant C. fortunei clones to LT. We found that the electrolyte leakage of all ten clones increased strongly between 0 and −8 °C, while below −8 or between 4 and 0 °C did not yield additional increases. Under cold stress, clones #32 and #42 showed different degrees of needle browning. From 25 to −20 °C, maximum and effective quantum yields of photosystem II (Fv/Fm and YII) and photochemical and non-photochemical quenching (qP and NPQ) decreased continuously in two clones with decreasing temperature, where #42 was more strongly affected compared with #32. The chlorophyll content first decreased significantly to the lowest from 25 to −12 °C, then increased significantly at −16/−20 °C compared with −12 °C. We observed changes in needle cellular ultrastructure at −8 °C, with chloroplasts of #32 swelling, while those of #42 were destroyed. Correlation analysis indicated that needle browning and chlorophyll fluorescence were closely related to temperature, and cellular ultrastructure changed notably around semi-lethal temperature (LT50), which can be used as physiological indicators for the identification of cold resistance. We found a clear difference in cold tolerance between clones of #32 and #42, with #32 being more tolerant, which can be exploited in breeding programs. We conclude that strongly cold-resistant clones have more stable physiological states and a wider adaptability to LT compared with weak ones.

2020 ◽  
Author(s):  
Steven J. Burgess ◽  
Elsa de Becker ◽  
Stephanie Cullum ◽  
Isla Causon ◽  
Iulia Floristeanu ◽  
...  

AbstractImproving the efficiency of crop photosynthesis has the potential to increase yields. Genetic manipulation showed photosynthesis can be improved in Tobacco by speeding up relaxation of photoprotective mechanisms, known as non-photochemical quenching (NPQ), during high to low light transitions. However, it is unclear if natural variation in NPQ relaxation can be exploited in crop breeding programs. To address this issue, we measured NPQ relaxation in the 41 parents of a soybean NAM population in field experiments in Illinois during 2018 and 2019. There was significant variation in amount and rate of fast, energy dependent quenching (qE) between genotypes. However, strong environmental effects led to a lack of correlation between values measured over the two growing season, and low broad-sense heritability estimates (< 0.3). These data suggest that either improvements in screening techniques, or transgenic manipulation, will be required to unlock the potential for improving the efficiency of NPQ relaxation in soybean.Table of Abbreviations


2017 ◽  
Vol 5 ◽  
pp. 1118-1123 ◽  
Author(s):  
Rositsa Cholakova-Bimbalova ◽  
Andon Vassilev

: In the climate conditions of Bulgaria, early stages of maize plants development often go under suboptimal temperatures. Chilling stress is known to cause different physiological disturbances in young maize plants during the transition period from heterotrophic to autotrophic nutrition. However, the effect of chilling may differ among maize hybrids. Photosynthetic performance could be a good indicator for the hybrid tolerance to chilling. The aim of our study was to evaluate the tolerance of young maize plants from two hybrids – the new Bulgarian hybrid - Kneza 307 and the hybrid P9528 using as criteria the changes in their photosynthetic performance.Plants at the third leaf stage were exposed for seven days to chilling stress. At the end of the experimental period, growth, leaf lipid peroxidation, and several photosynthetic parameters were measured. We found that chilling stress reduced the fresh mass accumulation, increased lipid peroxidation, diminished net photosynthetic rate and chlorophyll content, and enhanced non-photochemical quenching of chlorophyll fluorescence. Although the responses of both hybrids were similar, some specificity were observed and discussed.


2016 ◽  
Vol 43 (6) ◽  
pp. 479 ◽  
Author(s):  
Jun-Wen Chen ◽  
Shuang-Bian Kuang ◽  
Guang-Qiang Long ◽  
Sheng-Chao Yang ◽  
Zhen-Gui Meng ◽  
...  

Partitioning of light energy into several pathways and its relation to photosynthesis were examined in a shade-demanding species Panax notoginseng (Burkill) F.H.Chen ex C.Y.Wu & K.M.Feng grown along a light gradient. In fully light-induced leaves, the actual efficiency of PSII photochemistry (ΔF/Fmʹ), electron transport rate (ETR), non-photochemical quenching (NPQ) and photochemical quenching (qP) were lower in low-light-grown plants; this was also the case in fully dark-adapted leaves under a simulated sunfleck. In response to varied light intensity, high-light-grown plants showed greater quantum yields of light-dependent non-photochemical quenching (ΦNPQ) and PSII photochemistry (ΦPSII) and smaller quantum yields of fluorescence and constitutive thermal dissipation (Φf,d). Under the simulated sunfleck, high-light-grown plants showed greater ΦPSII and smaller Φf,d. There were positive relationships between net photosynthesis (Anet) and ΦNPQ+f,d and negative relationships between Anet and ΦPSII in fully light-induced leaves; negative correlations of Anet with ΦNPQ+f,d and positive correlations of Anet with ΦPSII were observed in fully dark-adapted leaves. In addition, more nitrogen was partitioned to light-harvesting components in low-light-grown plants, whereas leaf morphology and anatomy facilitate reducing light capture in high-light-grown plants. The pool of xanthophyll pigments and the de-epoxidation state was greater in high-light-grown plants. Antioxidant defence was elevated by increased growth irradiance. Overall, the evidences from P. notoginseng suggest that in high-light-grown shade-demanding plants irradiated by high light more electrons were consumed by non-net carboxylative processes that activate the component of NPQ, that low-light-grown plants correspondingly protect the photosynthetic apparatus against photodamage by reducing the efficiency of PSII photochemistry under high light illumination, and that during the photosynthetic induction, the ΔpH-dependent (qE) component of NPQ might dominate photoprotection, but the NPQ also depresses the enhancement of photosynthesis via competition for light energy.


HortScience ◽  
2011 ◽  
Vol 46 (6) ◽  
pp. 895-900 ◽  
Author(s):  
Julián Miralles-Crespo ◽  
Juan Antonio Martínez-López ◽  
José Antonio Franco-Leemhuis ◽  
Sebastián Bañón-Arias

Physiological and biochemical indicators that reflect the responses of plants to chilling stress could be useful for identifying plant damage caused by freezing or other stresses. The objective of this study was to determine any relationship between changes in chlorophyll fluorescence and the appearance of visual symptoms resulting from freezing temperatures in two cultivars of oleander. In the least frost-sensitive cultivar (yellow oleander), freezing temperatures (–4 °C for 3 h) did not produce changes in the photochemical parameters. In the more frost-sensitive cultivar (pink oleander), non-photochemical quenching (NPQ) and the maximum photochemical efficiency of photosystem II (Fv/Fm) decreased after the same freezing treatment. The first of these potential indicators remained low, whereas the second steadily recovered during the 4 months after freezing simulation. The results suggest that measuring chlorophyll fluorescence may provide a rapid method for assessing freezing injury in oleander.


2011 ◽  
Vol 51 (No. 5) ◽  
pp. 206-212 ◽  
Author(s):  
K. Kosová ◽  
D. Haisel ◽  
I. Tichá

The effect of chilling on light dependence of photosynthetic and chlorophyll a fluorescence characteristics in two maize genotypes CE 704 and CE 810 grown in a glasshouse during spring and autumn was studied. In spring, the net photosynthetic rate (P<sub>N</sub>) of CE 704 plants was not affected by chilling under moderate irradiance but it was strongly affected under a saturating one. This indicates that efficiency of photosynthetic apparatus was not affected by chilling but its capacity was decreased. Contrary to CE 704, CE 810 plants were not affected by chilling under saturating irradiance. In autumn, CE 704 plants adapted to chilling and no statistically significant differencies in P<sub>N</sub> and Fv/Fm between chilled and control plants in the whole range of irradiance were found. Enhanced activity of non-photochemical quenching (NPQ) in chilled CE 704 plants under saturating irradiance corresponded with an increased level of xanthophyll cycle pigments and an increased deepoxidation state of these pigments.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 149
Author(s):  
Vladimir Sukhov ◽  
Ekaterina Sukhova ◽  
Yulia Sinitsyna ◽  
Ekaterina Gromova ◽  
Natalia Mshenskaya ◽  
...  

Photosynthesis is an important target of action of numerous environmental factors; in particular, stressors can strongly affect photosynthetic light reactions. Considering relations of photosynthetic light reactions to electron and proton transport, it can be supposed that extremely low frequency magnetic field (ELFMF) may influence these reactions; however, this problem has been weakly investigated. In this paper, we experimentally tested a hypothesis about the potential influence of ELFMF of 18 µT intensity with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) on photosynthetic light reactions in wheat and pea seedlings. It was shown that ELFMF decreased non-photochemical quenching in wheat and weakly influenced quantum yield of photosystem II at short-term treatment; in contrast, the changes in potential and effective quantum yields of photosystem II were observed mainly under chronic action of ELFMF. It is interesting that both short-term and chronic treatment decreased the time periods for 50% activation of quantum yield and non-photochemical quenching under illumination. Influence of ELFMF on pea was not observed at both short-term and chronic treatment. Thus, we showed that ELFMF with Schumann resonance frequencies could influence photosynthetic light processes; however, this effect depends on plant species (wheat or pea) and type of treatment (short-term or chronic).


Author(s):  
Yuki Takahashi ◽  
Shinya Wada ◽  
Ko Noguchi ◽  
Chikahiro Miyake ◽  
Amane Makino ◽  
...  

Abstract Although N levels affect leaf photosynthetic capacity, the effects of N levels on the photochemistry of photosystems II and I (PSII and PSI, respectively) are not well-understood. In the present study, we examined this aspect in rice (Oryza sativa L. ‘Hitomebore’) plants grown under three different N levels at normal or high temperature that can occur during rice culture and does not severely suppress photosynthesis. At both growth temperatures, the quantum efficiency of PSII [Y(II)] and the fraction of the primary quinone electron acceptor in its oxidized state were positively correlated with the amount of total leaf-N, whereas the quantum yields of non-photochemical quenching and donor-side limitation of PSI [Y(ND)] were negatively correlated with the amount of total leaf-N. These changes in PSII and PSI parameters were strongly correlated with each other. Growth temperatures scarcely affected these relationships. These results suggest that the photochemistry of PSII and PSI is coordinately regulated primarily depending on the amount of total leaf-N. When excess light energy occurs in low-N acclimated plants, oxidation of the reaction center chlorophyll of PSI is thought to be stimulated to protect PSI from excess light energy. It is also suggested that PSII and PSI normally operate at high temperature used in the present study. In addition, as the relationships between Y(II) and Y(ND) were found to be almost identical to those observed in osmotically stressed rice plants, common regulation is thought to be operative when excess light energy occurs due to different causes.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541a-541
Author(s):  
Lailiang Cheng ◽  
Leslie H. Fuchigami ◽  
Patrick J. Breen

Bench-grafted Fuji/M26 apple trees were fertigated with different concentrations of nitrogen by using a modified Hoagland solution for 6 weeks, resulting in a range of leaf N from 1.0 to 4.3 g·m–2. Over this range, leaf absorptance increased curvilinearly from 75% to 92.5%. Under high light conditions (1500 (mol·m–2·s–1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range except for a slight drop at the lower end. As leaf N increased, non-photochemical quenching under high light declined and there was a corresponding increase in the efficiency with which the absorbed photons were delivered to open PSII centers. Photochemical quenching coefficient decreased significantly at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially used for free radical formation was estimated to be about 10% regardless of the leaf N status. It was concluded that increased thermal dissipation protected leaves from photo-oxidation as leaf N declined.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1916
Author(s):  
Myriam Canonico ◽  
Grzegorz Konert ◽  
Aurélie Crepin ◽  
Barbora Šedivá ◽  
Radek Kaňa

Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0–30 min), (2) intermediate phase (30–120 min), and (3) slow acclimation phase (120–360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ–carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.


Sign in / Sign up

Export Citation Format

Share Document