Significance of mesophyll conductance for photosynthetic capacity and water-use efficiency in response to alkaline stress in Populus cathayana seedlings

2013 ◽  
Vol 51 (3) ◽  
pp. 438-444 ◽  
Author(s):  
G. Xu ◽  
T. F. Huang ◽  
X. L. Zhang ◽  
B. L. Duan
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2021 ◽  
pp. 1-12
Author(s):  
R. Dietrich ◽  
F.W. Bell ◽  
M. Anand

Given the large contribution of forests to terrestrial carbon storage, there is a need to resolve the environmental and physiological drivers of tree-level response to rising atmospheric CO2. This study examines how site-level soil moisture influences growth and intrinsic water-use efficiency in sugar maple (Acer saccharum Marsh.). We construct tree-ring, δ18O, and Δ13C chronologies for trees across a soil moisture gradient in Ontario, Canada, and employ a structural equation modelling approach to ascertain their climatic, ontogenetic, and environmental drivers. Our results support previous evidence for the presence of strong developmental effects in tree-ring isotopic chronologies — in the range of −4.7‰ for Δ13C and +0.8‰ for δ18O — across the tree life span. Additionally, we show that the physiological response of sugar maple to increasing atmospheric CO2 depends on site-level soil moisture variability, with trees only in relatively wet plots exhibiting temporal increases in intrinsic water-use efficiency. These results suggest that trees in wet and mesic plots have experienced temporal increases in stomatal conductance and photosynthetic capacity, whereas trees in dry plots have experienced decreases in photosynthetic capacity. This study is the first to examine sugar maple physiology using a dendroisotopic approach and broadens our understanding of carbon–water interactions in temperate forests.


2020 ◽  
Author(s):  
Teresa E. Gimeno ◽  
Courtney E. Campany ◽  
John E. Drake ◽  
Craig V.M. Barton ◽  
Mark G. Tjoelker ◽  
...  

2014 ◽  
Vol 152 (1) ◽  
pp. 98-114 ◽  
Author(s):  
Robert Hommel ◽  
Rolf Siegwolf ◽  
Matthias Saurer ◽  
Graham D. Farquhar ◽  
Zachary Kayler ◽  
...  

2014 ◽  
Vol 41 (6) ◽  
pp. 568 ◽  
Author(s):  
Eisrat Jahan ◽  
Jeffrey S. Amthor ◽  
Graham D. Farquhar ◽  
Richard Trethowan ◽  
Margaret M. Barbour

CO2 diffusion from substomatal intercellular cavities to sites of carboxylation in chloroplasts (mesophyll conductance; gm) limits photosynthetic rate and influences leaf intrinsic water-use efficiency (A/gsw). We investigated genotypic variability of gm and effects of gm on A/gsw among eleven wheat (Triticum aestivum L.) genotypes under light-saturated conditions and at either 2 or 21% O2. Significant variation in gm and A/gsw was found between genotypes at both O2 concentrations, but there was no significant effect of O2 concentration on gm. Further, gm was correlated with photosynthetic rate among the 11 genotypes, but was unrelated to stomatal conductance. The effect of leaf age differed between genotypes, with gm being lower in older leaves for one genotype but not another. This study demonstrates a high level of variation in gm between wheat genotypes; 0.5 to 1.0 μmol m−2 s−1 bar−1. Further, leaf age effects indicate that great care must be taken to choose suitable leaves in studies of genotypic variation in gm and water-use efficiency.


2016 ◽  
Vol 194 ◽  
pp. 61-71 ◽  
Author(s):  
Ji-Mei Han ◽  
Hao-Feng Meng ◽  
Sai-Yu Wang ◽  
Chuang-Dao Jiang ◽  
Feng Liu ◽  
...  

2015 ◽  
Vol 183 ◽  
pp. 13-22 ◽  
Author(s):  
Roberta Samara Nunes de Lima ◽  
Fábio Afonso Mazzei Moura de Assis Figueiredo ◽  
Amanda Oliveira Martins ◽  
Bruna Corrêa da Silva de Deus ◽  
Tiago Massi Ferraz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document