A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation

2018 ◽  
Vol 97 (1-2) ◽  
pp. 73-101 ◽  
Author(s):  
Cyrielle Corbin ◽  
Samantha Drouet ◽  
Lucija Markulin ◽  
Daniel Auguin ◽  
Éric Lainé ◽  
...  
2018 ◽  
Vol 77 (1) ◽  
pp. 97-101 ◽  
Author(s):  
Seung Hee Eom ◽  
Jae Kook Lee ◽  
Dong-Ho Kim ◽  
Heekyu Kim ◽  
Keum-Il Jang ◽  
...  

AbstractPolyamine oxidases (PAOs) are known to be involved in either the terminal catabolism or the back conversion of polyamines, which affect a range of physiological processes, including growth, development, and stress responses. In this study, based on genome-wide analysis, we identified five putative PAO genes (LuPAO1toLuPAO5) in flax (Linum usitatissimumL.) that contain the amino-oxidase domain and FAD-binding-domain. The expression analysis using quantitative real-time PCR revealed spatial variations in the expression ofLuPAOsin different organs. In addition, the expression level ofLuPAOsin the flax cell suspension culture was increased by treatment with methyl-jasmonate (MeJA) or pectin, but not with salicylic acid or chitosan. This indicates that LuPAOs might be involved in the MeJA-mediated biological activities. Taken together, our genome-wide analysis of PAO genes and expression profiling of these genes provide the first step toward the functional dissection of LuPAOs.


2017 ◽  
Author(s):  
Behrooz Darbani ◽  
Douglas B. Kell ◽  
Irina Borodina

ABSTRACTTransporter proteins mediate the translocation of substances across the membranes of living cells. We performed a genome-wide analysis of the compositional reshaping of cellular transporters (the transportome) across the kingdoms of bacteria, archaea, and eukarya. We show that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. This change has likely been important in the development of tissues performing energetically costly cellular functions. The transportome analysis also indicated seven bacterial species, includingNeorickettsia risticiiandNeorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, due to the restricted presence therein of clear homologues of modern mitochondrial solute carriers.


2021 ◽  
Author(s):  
Rania Jbir Koubaa ◽  
Mariem Ayadi ◽  
Mohamed Najib Saidi ◽  
Safa Charfeddine ◽  
Radhia Gargouri Bouzid ◽  
...  

Abstract As antioxidant enzymes, catalase (CAT) protects organisms from oxidative stress via the production of reactive oxygen species (ROS). These enzymes play important roles in diverse biological processes. However, little is known about the CAT genes in potato plants despite its important economical rank of this crop in the world. Yet, abiotic and biotic stresses severely hinder growth and development of the plants which affects the production and quality of the crop. To define the possible roles of CAT genes under various stresses, a genome-wide analysis of CAT gene family has been performed in potato plant.In this study, the StCAT gene’s structure, secondary and 3D protein structure, physicochemical properties, synteny analysis, phylogenetic tree and also expression profiling under various developmental and environmental cues were predicted using bioinformatics tools. The expression analysis by RT-PCR was performed using commercial potato cultivar. Three genes encoding StCAT that code for three proteins each of size 492 aa, interrupted by seven introns have been identified in potatoes. StCAT proteins were found to be localized in the peroxisome which is judged as the main H2O2 cell production site during different processes. Many regulating cis-elements related to stress responses and plant hormones signaling were found in the promoter sequence of each gene. The analysis of motifs and phylogenetic trees showed that StCAT are closer to their homologous in S. lycopersicum and share a 41% – 95% identity with other plants’ CATs. Expression profiling revealed that StCAT1 is the constitutively expressive member; while StCAT2 and StCAT3 are the stress-responsive members.


2017 ◽  
Vol 31 (S1) ◽  
Author(s):  
Sze Ting (Cecilia) Kwan ◽  
Minghui Wang ◽  
Julia H King ◽  
Jian Yan ◽  
Xinyin Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document