Soil aggregate sequestration of cover crop root and shoot-derived nitrogen

2005 ◽  
Vol 272 (1-2) ◽  
pp. 263-276 ◽  
Author(s):  
Yasemin Kavdır ◽  
Alvin J. M. Smucker
Keyword(s):  
Weed Science ◽  
1996 ◽  
Vol 44 (2) ◽  
pp. 402-407 ◽  
Author(s):  
Melinda L. Hoffman ◽  
Leslie A. Weston ◽  
John C. Snyder ◽  
Emilie E. Regnier

Greenhouse experiments that used capillary mat subirrigation to maintain constant soil moisture and to supply fertilizer continuously were conducted to evaluate the effects of sorghum or rye residue on early growth of barnyardgrass and velvetleaf. The separate effects of root residue and of shoot residue were compared to the combined effects of root plus shoot residues and to an uncovered soil control. Residues included as nontoxic controls were leached shoot tissue and poplar excelsior. Shoot residue, leached shoot tissue, and poplar excelsior were surface-applied on an equal light transmittance basis such that mass of poplar excelsior > shoot residue > leached shoot tissue. The presence of rye root residue delayed emergence of barnyardgrass. Surface-applied residues tended to decrease barnyardgrass height, but velvetleaf stem length was greater in treatments with surface residue. Although cover crop shoot residues had little effect on weed growth after 18 d, weed growth decreased in the presence of cover crop root residues and poplar excelsior.


2016 ◽  
Vol 538 ◽  
pp. 667-676 ◽  
Author(s):  
Yang Yu ◽  
Willibald Loiskandl ◽  
Hans-Peter Kaul ◽  
Margarita Himmelbauer ◽  
Wei Wei ◽  
...  
Keyword(s):  

Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 43
Author(s):  
Daphne Topps ◽  
Md Imam ul Khabir ◽  
Hagir Abdelmagid ◽  
Todd Jackson ◽  
Javed Iqbal ◽  
...  

Cover crops are considered an integral component of agroecosystems because of their positive impacts on biotic and abiotic indicators of soil health. At present, we know little about the impact of cover crop types and diversity on the organic carbon (OC) contents of different soil aggregate-size classes. In this study, we investigated the effect of cover plant diversity on OC contents of different soil aggregates, such as macro- (<2000–500 μm), meso- (<500–250 μm), and micro-aggregates (<250 μm). Our experiment included a total of 12 experimental treatments in triplicate; six different monoculture treatments such as chickling vetch (Vicia villosa), crimson clover (Trifolium incarnatum), hairy vetch (Vicia villosa), field peas (Pisum sativum), oilseed radish (Raphanus sativus), and mighty mustard (Brassica juncea), and their three- and six-species mixture treatments, including one unplanted control treatment. We performed this experiment usingdeep pots that contained soil collected from a corn-soybean rotation field. At vegetative maturity of cover plants (about 70 days), we took soil samples, and the soil aggregate-size classes were separated by the dry sieving. We hypothesized that cover crop type and diversity will improve OC contents of different soil aggregate-size classes. We found that cover plant species richness weakly positively increased OC contents of soil macro-aggregates (p = 0.056), whereas other aggregate-size classes did not respond to cover crop diversity gradient. Similarly, the OC contents of macroaggregates varied significantly (p = 0.013) under cover crop treatments, though neither monoculture nor mixture treatments showed significantly higher OC contents than the control treatment in this short-term experiment. Interestingly, the inclusion of hairy vetch and oilseed radish increased and decreased the OC contents of macro- and micro-aggregates, respectively. Moreover, we found a positive correlation between shoot biomass and OC contents of macroaggregates. Overall, our results suggest that species-rich rather than -poor communities may improve OC contents of soil macroaggregates, which constitute a major portion of soil systems, and are also considered as important indicators of soil functions.


1998 ◽  
Vol 90 (4) ◽  
pp. 511-518 ◽  
Author(s):  
Upendra M. Sainju ◽  
Bharat P. Singh ◽  
Wayne F. Whitehead

2021 ◽  
Author(s):  
Gheorghe Stegarescu ◽  
Endla Reintam ◽  
Tõnu Tõnutare

&lt;p&gt;Cover crops are widely known for their capacity to improve the soil biological properties and soil structural stability. Nevertheless, the cover crop residues quantity necessary to improve these soil properties is not yet really known. A 30-day incubation experiment was conducted to explore the effect of oilseed rape (Brassica napus) residues (ORR) as a cover crop on the soil aggregate stability of sandy loam soil. The fresh ORR was mixed with the soil at different rates starting from 1.0 to 6.0 g C kg&lt;sup&gt;-1&lt;/sup&gt; of soil. The experiment consisted of five treatments: bulk soil (I), soil mixed with ORR at a rate of 1 g C kg&lt;sup&gt;-1&lt;/sup&gt; of soil (II), soil mixed with ORR at a rate of 2 g C kg&lt;sup&gt;-1&lt;/sup&gt; of soil (III), soil mixed with ORR at a rate of 4 g C kg&lt;sup&gt;-1&lt;/sup&gt; of soil (IV), soil mixed with ORR at a rate of 6 g C kg&lt;sup&gt;-1&lt;/sup&gt; of soil (V). During 30 days of incubation the soil moisture, soil water stable aggregates, and microbial substrate induced respiration rates were measured. The aggregate stability significantly increased after 30 days only in the treatment with 1 g C kg&lt;sup&gt;-1&lt;/sup&gt; of soil. In turn, the ORR applied at a rate of 6 g C kg&lt;sup&gt;-1&lt;/sup&gt; of soil significantly decreased the soil aggregate stability. The higher the ORR addition rate the lower was the soil basal respiration and substrate induced respiration. The general conclusion was that the higher quantity of ORR increased the soil moisture which subsequently created unfavorable conditions for the soil microbial activity and led to soil aggregate stability degradation. However, this conclusion must be validated in a field study where the soil moisture and temperature conditions are much more variable compared to our incubation experiment.&lt;/p&gt;


GCB Bioenergy ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 1252-1263 ◽  
Author(s):  
Emily E. Austin ◽  
Kyle Wickings ◽  
Marshall D. McDaniel ◽  
G. Philip Robertson ◽  
A. Stuart Grandy

2020 ◽  
Vol 100 (3) ◽  
pp. 314-318
Author(s):  
April Stainsby ◽  
William E. May ◽  
Guy P. Lafond ◽  
Martin H. Entz

Black medic (Medicago lupulina L.) is a self-regenerating cover crop which was tested for its ability to improve soil physical properties. Soil aggregate stability was assessed in plots that included a black medic cover crop in a no-till grain rotation, which was fertilized with two levels of nitrogen (N), for 15 yr. In the wheat phase of the rotation, the medic cover crop increased mean weight diameter by 21% in the reduced N fertilizer treatment but not in the recommended N treatment. Generally, the addition of medic reduced the proportion of small aggregates and increased the proportion of large aggregates. This pattern was stronger in reduced N compared with recommended N fertilizer levels. This study provided evidence for medic to increase aggregate stability under low external N input grain production.


Author(s):  
Joseph P. Amsili ◽  
Jason P. Kaye

Abstract Cover crops are widely used to increase the quantity of organic carbon (C) returned to the soil between cash crops. Roots play an important role in increasing soil organic carbon (SOC) levels, but the root traits that impact SOC likely vary widely among cover crop species and this variation has yet to be characterized. Recently, cover crop mixtures have expanded in popularity as a way to increase the diversity of cover crop benefits. We tested the quantity, quality and spatial distribution of roots in three monocultures and one mixture to increase our understanding of root trait variation among species, and how that variation impacts mixture design. Root cores were taken from in-row and between-row locations to a depth of 40 cm from cover crops planted after winter wheat during the 2016–2017 growing season. These samples were taken from a larger maize–soybean–winter wheat organic grain rotation experiment (2012–2018) located in central Pennsylvania, USA. Cover crop treatments included monocultures of triticale (X Triticosecale Wittmack cv. ‘Trical 815’), canola (Brassica napus L. cv. ‘Wichita’), crimson clover (Trifolium incarnatum L. cv. ‘Dixie’) and a five species mixture dominated by those three species. Additionally, cumulative carbon (C) inputs were assessed for the entire rotation to determine cover crop and cash crop root C contributions. Root biomass C vertical and horizontal distribution, root-to-shoot (R:S) ratio, and root carbon-to-nitrogen (C:N) ratio differed among cover crop treatments. Triticale produced more root biomass in the between-row space at all depth intervals compared to other cover crop treatments. The five species mixture had more total 0–5 cm and between-row 0–5 cm root biomass than crimson clover in spring 2017. Cover crop and cash crop roots increased cumulative C estimates by between 37% (crimson clover) and 46% (triticale) compared to shoot C alone. Cover crop root trait information can inform the belowground benefits from combining different species into cover crop mixtures. Crimson clover produced less root biomass, surface root biomass and between-row root biomass than other cover crop treatments. Therefore, combining crimson clover with grass and certain brassica species can improve total root biomass production, and root distribution compared to crimson clover monocultures, whereas reducing the C:N ratio of roots compared to grass species monocultures. The five species mixture led to greater cumulative carbon inputs compared to monoculture treatments, which was due to greater cover crop biomass C and its influence on the following corn crop's biomass C.


Sign in / Sign up

Export Citation Format

Share Document