Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil

2010 ◽  
Vol 337 (1-2) ◽  
pp. 259-272 ◽  
Author(s):  
Angelika St. Laurent ◽  
Ian A. Merwin ◽  
Gennaro Fazio ◽  
Janice E. Thies ◽  
Michael G. Brown
2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Alicia Balbín-Suárez ◽  
Maik Lucas ◽  
Doris Vetterlein ◽  
Søren J Sørensen ◽  
Traud Winkelmann ◽  
...  

ABSTRACT Apple replant disease (ARD) occurs worldwide in apple orchards and nurseries and leads to a severe growth and productivity decline. Despite research on the topic, its causality remains unclear. In a split-root experiment, we grew ARD-susceptible ‘M26’ apple rootstocks in different substrate combinations (+ARD: ARD soil; -ARD: gamma-irradiated ARD soil; and Control: soil with no apple history). We investigated the microbial community composition by 16S rRNA gene amplicon sequencing (bacteria and archaea) along the soil–root continuum (bulk soil, rhizosphere and rhizoplane). Significant differences in microbial community composition and structure were found between +ARD and -ARD or +ARD and Control along the soil–root continuum, even for plants exposed simultaneously to two different substrates (-ARD/+ARD and Control/+ARD). The substrates in the respective split-root compartment defined the assembly of root-associated microbial communities, being hardly influenced by the type of substrate in the respective neighbor compartment. Root-associated representatives from Actinobacteria were the most dynamic taxa in response to the treatments, suggesting a pivotal role in ARD. Altogether, we evidenced an altered state of the microbial community in the +ARD soil, displaying altered alpha- and beta-diversity, which in turn will also impact the normal development of apple rhizosphere and rhizoplane microbiota (dysbiosis), concurring with symptom appearance.


LWT ◽  
2021 ◽  
pp. 111694
Author(s):  
Xiaoxi Chen ◽  
Qin Chen ◽  
Yaxin Liu ◽  
Bin Liu ◽  
Xubo Zhao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raiza Hasrat ◽  
Jolanda Kool ◽  
Wouter A. A. de Steenhuijsen Piters ◽  
Mei Ling J. N. Chu ◽  
Sjoerd Kuiling ◽  
...  

AbstractThe low biomass of respiratory samples makes it difficult to accurately characterise the microbial community composition. PCR conditions and contaminating microbial DNA can alter the biological profile. The objective of this study was to benchmark the currently available laboratory protocols to accurately analyse the microbial community of low biomass samples. To study the effect of PCR conditions on the microbial community profile, we amplified the 16S rRNA gene of respiratory samples using various bacterial loads and different number of PCR cycles. Libraries were purified by gel electrophoresis or AMPure XP and sequenced by V2 or V3 MiSeq reagent kits by Illumina sequencing. The positive control was diluted in different solvents. PCR conditions had no significant influence on the microbial community profile of low biomass samples. Purification methods and MiSeq reagent kits provided nearly similar microbiota profiles (paired Bray–Curtis dissimilarity median: 0.03 and 0.05, respectively). While profiles of positive controls were significantly influenced by the type of dilution solvent, the theoretical profile of the Zymo mock was most accurately analysed when the Zymo mock was diluted in elution buffer (difference compared to the theoretical Zymo mock: 21.6% for elution buffer, 29.2% for Milli-Q, and 79.6% for DNA/RNA shield). Microbiota profiles of DNA blanks formed a distinct cluster compared to low biomass samples, demonstrating that low biomass samples can accurately be distinguished from DNA blanks. In summary, to accurately characterise the microbial community composition we recommend 1. amplification of the obtained microbial DNA with 30 PCR cycles, 2. purifying amplicon pools by two consecutive AMPure XP steps and 3. sequence the pooled amplicons by V3 MiSeq reagent kit. The benchmarked standardized laboratory workflow presented here ensures comparability of results within and between low biomass microbiome studies.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document