Epichloë gansuensis endophyte-infection alters soil enzymes activity and soil nutrients at different growth stages of Achnatherum inebrians

2020 ◽  
Vol 455 (1-2) ◽  
pp. 227-240
Author(s):  
Wenpeng Hou ◽  
Jianfeng Wang ◽  
Zhibiao Nan ◽  
Michael J. Christensen ◽  
Chao Xia ◽  
...  
Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 166 ◽  
Author(s):  
George F. Antonious ◽  
Eric T. Turley ◽  
Mohammad H. Dawood

Soil enzymes (urease, invertase, acid and alkaline phosphatase) activity in the rhizosphere of field-grown tomato plants were used to monitor the impact of soil amendments (SA) and SA mixed with biochar on soil microbial activity four months after addition of amendments. The soil treatments were sewage sludge (SS); horse manure (HM); chicken manure (CM); vermicompost (worm castings); commercial inorganic fertilizer; commercial organic fertilizer; and no-mulch (NM) native soil used for comparison purposes. Soil treatments also were mixed with 10% (w/w) biochar to investigate the impact of biochar on soil enzymes activity. The results showed a significant increase in soil urease and invertase activities after incorporation of SA to native soil. Vermicompost and HM were superior in increasing urease and invertase activity four months after their addition to native soil. Alkaline phosphatase activity fluctuated among the soil treatments, revealing some obstruction of its activity. SS amended with biochar increased acid phosphatase activity by 115% four months after SS addition. Other than alkaline phosphatase, organic manure enhanced soil biological activity (microbial biomass and release of enzymes), indicating that the use of manures, rather than inorganic fertilizers, in crop production is an affordable and sustainable agricultural production system.


2012 ◽  
Vol 92 (3) ◽  
pp. 501-507 ◽  
Author(s):  
Fengbin Song ◽  
Xiying Han ◽  
Xiancan Zhu ◽  
Stephen J. Herbert

Song, F., Han, X., Zhu, X. and Herbert, S. J. 2012. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Can. J. Soil Sci 92: 501–507. Drought tolerant corn hybrids (Zea mays L.) are an excellent model to evaluate the effect of water stress on rhizosphere functions. The purpose of this study was to investigate the influences of water stress on soil pH, enzyme activities, and root exudates from corn. Two corn hybrids, Baidan 9 (drought tolerant) and Baidan 31 (non-drought tolerant) were grown in soil-filled pots for pH and enzyme assays and in hydroponics culture for root exudate analysis. Water stress was imposed at four growth stages: seedling, elongation, tasseling and grain-filling stages. Soil pH was lower in the rhizosphere than bulk soil, but was not affected by water deficiency. Water stress increased protease activity at the seedling stage, but reduced its activities at other stages compared to the control. A significant positive correlation was observed between pH and alkaline phosphatase activity under water stress. Compared to Baidan 31, the rhizosphere of drought-tolerant Baidan 9 had greater protease and catalase activities at all growth stages, greater alkaline phosphatase, lower acid phosphatase and greater invertase activities at elongation, tasseling and filling stages. Osmotic stress increased the organic acid concentration (malic, lactic, acetic, succinic, citric and maleic acids) in root exudates of Baidan 9 and Baidan 31; as well there was a greater fumaric acid concentration in Baidan 31 under osmotic stress than without stress. The increased soil enzyme activities and organic acids exuded from the rhizosphere of plants under water stress might contribute to drought tolerance in corn hybrids.


2021 ◽  
Vol 69 (1) ◽  
pp. 86-95
Author(s):  
Ashim Datta ◽  
Madhu Choudhary ◽  
H.S. Jat ◽  
P.C. Sharma ◽  
S.K. Kakraliya ◽  
...  

Author(s):  
xubo Sun ◽  
yingying Sun ◽  
juan Li ◽  
tingting Cao ◽  
haiou Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document