Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages

2012 ◽  
Vol 92 (3) ◽  
pp. 501-507 ◽  
Author(s):  
Fengbin Song ◽  
Xiying Han ◽  
Xiancan Zhu ◽  
Stephen J. Herbert

Song, F., Han, X., Zhu, X. and Herbert, S. J. 2012. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Can. J. Soil Sci 92: 501–507. Drought tolerant corn hybrids (Zea mays L.) are an excellent model to evaluate the effect of water stress on rhizosphere functions. The purpose of this study was to investigate the influences of water stress on soil pH, enzyme activities, and root exudates from corn. Two corn hybrids, Baidan 9 (drought tolerant) and Baidan 31 (non-drought tolerant) were grown in soil-filled pots for pH and enzyme assays and in hydroponics culture for root exudate analysis. Water stress was imposed at four growth stages: seedling, elongation, tasseling and grain-filling stages. Soil pH was lower in the rhizosphere than bulk soil, but was not affected by water deficiency. Water stress increased protease activity at the seedling stage, but reduced its activities at other stages compared to the control. A significant positive correlation was observed between pH and alkaline phosphatase activity under water stress. Compared to Baidan 31, the rhizosphere of drought-tolerant Baidan 9 had greater protease and catalase activities at all growth stages, greater alkaline phosphatase, lower acid phosphatase and greater invertase activities at elongation, tasseling and filling stages. Osmotic stress increased the organic acid concentration (malic, lactic, acetic, succinic, citric and maleic acids) in root exudates of Baidan 9 and Baidan 31; as well there was a greater fumaric acid concentration in Baidan 31 under osmotic stress than without stress. The increased soil enzyme activities and organic acids exuded from the rhizosphere of plants under water stress might contribute to drought tolerance in corn hybrids.

2019 ◽  
Vol 14 (32) ◽  
pp. 1493-1498
Author(s):  
M. Hassen Jemal ◽  
T. Wondimu ◽  
R. Borena Fikadu ◽  
N. Kebede ◽  
A. Niguse ◽  
...  

2012 ◽  
Vol 151 (5) ◽  
pp. 630-647 ◽  
Author(s):  
R. SANKARAPANDIAN ◽  
S. AUDILAKSHMI ◽  
V. SHARMA ◽  
K. GANESAMURTHY ◽  
H. S. TALWAR ◽  
...  

SUMMARYRecent trends in climate change resulting in global warming and extreme dry spells during rainy seasons are having a negative impact on grain and fodder production in rain-fed crops in India. Understanding the mechanisms of drought tolerance at various growth stages will help in developing tolerant genotypes. Crosses were made between elite and drought-tolerant sorghums, and F2and F3progenies were evaluated for drought tolerance in multiple locations. Twenty-five F4/F5derivatives along with drought-tolerant check plants (two high-yielding genotypes showing moderate drought tolerance: C43 (male parent of the commercial hybrid CSH 16, tolerant to drought) and CSV 17, (a pure line commercial cultivar released for drought-prone areas) were screened for drought tolerance under a factorial randomized block design with three replications during the rain-free months of April–June in 2007 and 2008 at Tamil Nadu Agricultural University, Kovilpatti, India. In each generation/year, four trials were conducted and water stress at different phases of crop growth,viz. vegetative, flowering and post-flowering (maturity), was imposed by withholding irrigation. Observations were recorded on grain and straw yields, plant height, number of roots, root length, leaf relative water content (LRWC), chlorophyll content and stomatal conductance under all treatments. The traits, grain yield, plant height, average root length and stomatal conductance showed significant mean sums of squares (SSs) for genotype × environment (G × E), suggesting that genotypes had significant differential response to the changing environments. Significant mean SSs due to G × E (linear) were obtained for straw yield, LRWC and chlorophyll content, indicating that the variability is partly genetic and partly influenced by environment. Grain yield was correlated with chlorophyll content (r = 0·43) at the vegetative stage, with number of roots (r = 0·49), LRWC (r = 0·51), chlorophyll content (r = 0·46) and stomatal conductance (r = −0·51) at the pre-flowering stage, and with LRWC (r = 0·50) and stomatal conductance (r = −0·40) at the post-flowering stage, under water stress. Partial least square (PLS) analysis showed that different traits were important for grain yield under water stress at different growth stages. Pyramiding the genes for the traits responsible for high grain yield under stress will help in developing stable genotypes at different stages of plant growth.


2016 ◽  
Vol 4 (2) ◽  
pp. 206-214 ◽  
Author(s):  
Zaid Chachar ◽  
N. A. Chachar ◽  
Q.I. Chachar ◽  
S.M Mujtaba ◽  
G.A Chachar ◽  
...  

Climate change is emerging phenomena and causing frequent drought which lead to scaricity of water, which ultimately nagetively affecting wheat (Triticumaestivum L.) yield all around the world. The aim of this study was to explore the potential deought tolerant wheat genotypes for candidate genes exploration. This study was conducted during the year 2014-2015 at Plant Physiology Division, Nuclear Institute of Agriculture (NIA) Tandojam. The six wheat genotypes (cv. MT-1/13, MT-2/13, MT-3/13, MT-4/13 Chakwal-86 and Khirman) were investigated for their response at germination and seedling stage under different water stress treatments (0, -0.5, -0.75 and -1.0 MPa) in controlled conditions. The results of experiments with reference to genotypes revealed that genotype Chakwal-86 shows maximum seed germination (82.58 %), while the genotype Khirman shows maximum shoot length  (7.23 cm), root length  (15.1 cm), shoot fresh wt. (5.85 g 10-1shoots), root fresh wt.  (3.45 g 10-1roots), shoot dry wt. (1.33 g 10-1shoots), root dry wt. (0.69 g 10-1roots). Among the genotypes tested Khirman and MT-4/13 are the tolerant genotypes had the potential to perform better under drought conditions, whereas  MT-4/13 and Chakwal-86 were moderate tolerant under water stress conditions. Moreover, the genotypes i.e. MT-1/13 and MT-2/13 are the sensitive genotypes under drought environment. It is concluded from present in-vitro studies that osmotic stress significantly reduced the seed germination shoot/root length fresh and dry weight in all six wheat genotypes. The maximum reduction was found at higher osmotic stress induced by PEG-6000 (-1.0 MPa) significantly.


2010 ◽  
Vol 56 (No. 2) ◽  
pp. 67-75 ◽  
Author(s):  
M.H. Biglouei ◽  
M.H. Assimi ◽  
A. Akbarzadeh

A field research was carried out in the years of 2005, 2006 and 2007 in order to determine the effect of irrigation and water stress imposed at different growth stages on quantity and quality traits of Virginia tobacco plants. A randomized complete block design with four treatments and three replications was applied at the Rasht tobacco research station. Treatments were: no irrigation (dryland farming) as the complete water stress (WS<sub>0</sub>), water stress till the end of flower bud forming stage (WS<sub>1</sub>), water stress till the end of flowering stage (WS<sub>2</sub>) and full irrigation (WS<sub>3</sub>) as control in each cropping season. The combined analysis of variance showed that the effect of water stress on all the traits related to yield, quality traits and all the traits related to yield components except number of leaves, was significant (<i>P</i> < 0.01). The interaction between year and water stress showed that the treatment of WS0 in all three experimental years significantly (<i>P</i> < 0.05) affected the fresh and dry leaf yield, plant height and sugar and nicotine percentage. The comparison of means of three years (average of three years) also revealed that the treatment of WS<sub>0</sub> significantly (<i>P</i> < 0.05) affected all of the traits which were related to tobacco quantity and quality except for the number of leaves. Moreover, the level of water productivity in recognition of each water volume unit for three experimental years for the treatments of WS<sub>1</sub>, WS<sub>2</sub> and WS<sub>3</sub> were 1.223, 0.873 and 0.594 kg/m<sup>3</sup>, respectively, in the case of average dry leaf yield. Consequently, the results indicate that with optimizing irrigation application we can reach the higher level of productivity.


2016 ◽  
Vol 143 ◽  
pp. 209-226 ◽  
Author(s):  
Ramesh Katam ◽  
Katsumi Sakata ◽  
Prashanth Suravajhala ◽  
Tibor Pechan ◽  
Devaiah M. Kambiranda ◽  
...  

1995 ◽  
Vol 43 (2) ◽  
pp. 99-111 ◽  
Author(s):  
Zvi Plaut

It has been suggested that in many crops differences in sensitivity to water stress occur at different growth stages. Since identical amounts of water may be applied, irrespective of whether a crop is exposed to relatively severe and short periods of stress or to extended periods of mild stress, the responses to such differing conditions should be compared. Unfortunately, such a comparison has not been conducted in most studies on sensitivity to water stress at different growth stages. In the present study, based on three field experiments conducted for different purposes, such a comparison was made for three crops: corn, sunflower, and tomato. In corn, distinct responses of ear and kernel yields to the timing of water stress were found. Withdrawal of irrigation water during flowering and cob formation resulted in greater yield losses than during other stages, indicating that this is a critical growth stage. However, slight and uniform reduction of water during the entire growth period resulted in significantly less damage to kernel or ear production, although the total amount of water applied was similar to that under staged withdrawal. In sunflowers, the withdrawal of irrigation water even at noncritical growth stages caused a more marked reduction in grain yield than did a uniform reduction throughout the entire season. In tomatoes, on the other hand, the withdrawal of irrigation water during specific growth stages caused minimal damage to fruit and total soluble solids yield as compared with fully irrigated control; reduction of irrigation water throughout the season brought about a significant decrease in yield. The difference between these crops is interpreted on the basis of the determinance of their floral meristems.


1992 ◽  
Vol 15 (1) ◽  
pp. 49-59 ◽  
Author(s):  
R. D. EVANS ◽  
R. A. BLACK ◽  
W. H. LOESCHER ◽  
R. J. FELLOWS

2018 ◽  
Vol 5 (7) ◽  
pp. 171722 ◽  
Author(s):  
Yinping Li ◽  
Qing He ◽  
Zhufeng Geng ◽  
Shushan Du ◽  
Zhiwei Deng ◽  
...  

Xerophytes play an active role in preventing soil denudation and desertification in arid and semi-arid areas. Peganum harmala L. (Zygophyllaceae family), a seasonally growing, poisonous and drought-tolerant plant, is widely distributed in the Xinjiang Uygur Autonomous Region and used as a traditional herbal medicine as well as, in winter, a fodder source. Previous research has focused on the pharmacological activity of isolated compounds and stress responses to growth environments. However, the metabolic profile of P. harmala and variations in its metabolites, including medicinally active and stress resistance components, have not been illustrated during different growth stages. Here, we collected plant samples in May, August, October and December. We determined the metabolic composition of methanol extracts using NMR spectroscopy, and comparisons of four growth stages were accomplished by applying statistical analysis. The results showed that vasicine, choline and sucrose were significantly elevated in samples harvested in May. Significantly higher amounts of betaine, lysine, 4-hydroxyisoleucine and proline were found in samples collected in August than in samples collected in other months, and the concentrations of phosphorylcholine, glucose, acetic acid and vasicinone were highest in December. The relationships between differential biomarkers and plant physiological states affected by diverse growth environmental factors were discussed. Our result deepened the understanding of metabolic mechanisms in plant development and confirmed the advantage of using NMR-based metabolomic treatments in quality evaluation when P. harmala is used for different purposes.


Sign in / Sign up

Export Citation Format

Share Document