Divergent responses of plant biomass and its allocation to the altered precipitation regimes among different degraded grasslands in China

2021 ◽  
Author(s):  
Tianxue Yang ◽  
Junda Chen ◽  
Xiaoyue Zhong ◽  
Xuechen Yang ◽  
Gui Wang ◽  
...  
2021 ◽  
Author(s):  
Tianxue Yang ◽  
Junda Chen ◽  
Xiaoyue Zhong ◽  
Xuechen Yang ◽  
Gui Wang ◽  
...  

Abstract Purpose Climate models predict shifts in precipitation patterns characterized by increased precipitation amount and decreased frequency for semi-arid grasslands in northeast China. However, under these novel climatic conditions, potential differences in plant biomass and its allocation among different degraded grasslands remain unclear.Methods We conducted a mesocosm experiment to test the effects of higher precipitation amount (increased by 50% from the long-term mean) and lower frequency (decreased by 50%) on plant biomass and allocation in the lightly degraded (LDG), moderately degraded (MDG), and severely degraded grasslands (SDG).Results Lower precipitation frequency promoted belowground biomass (BGB), while reducing aboveground biomass (AGB) allocation through enhancing soil water variability. Higher precipitation amount enhanced AGB in LDG and MDG, but not in SDG due to less soil inorganic nitrogen. Lower precipitation frequency weakened the positive effects of higher precipitation amount on biomass. Under altered precipitation, adjustment of AGB vs. BGB allocation was the primary biomass allocation strategy in LDG and SDG. However, to maintain water acquirement, plants in MDG preferred to adjust root vertical distribution, and allocated more roots to the deep soil layer where had a relatively stable water source. This strategy was driven by the changes in plant community composition of the dominant species in MDG.Conclusions The findings of this research emphasized the importance of considering the degradation level of grasslands when predicting the responses of the ecosystem functions to the projected changes in precipitation regime. These findings are critical for making feasible decisions for the sustainable management of degraded grasslands.


1998 ◽  
Vol 18 (2) ◽  
pp. 71-79 ◽  
Author(s):  
S. D. Wullschleger ◽  
P. J. Hanson ◽  
T. J. Tschaplinski

2014 ◽  
Vol 11 (11) ◽  
pp. 2991-3013 ◽  
Author(s):  
S. Vicca ◽  
M. Bahn ◽  
M. Estiarte ◽  
E. E. van Loon ◽  
R. Vargas ◽  
...  

Abstract. As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is "no" – as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions.


Sign in / Sign up

Export Citation Format

Share Document