scholarly journals Isolation and identification of Amycolatopsis sp. strain 1119 with potential to improve cucumber fruit yield and induce plant defense responses in commercial greenhouse

2021 ◽  
Author(s):  
Sahar Alipour Kafi ◽  
Ebrahim Karimi ◽  
Mahmood Akhlaghi Motlagh ◽  
Zahra Amini ◽  
Ali Mohammadi ◽  
...  
2021 ◽  
Author(s):  
Sahar Alipour Kafi ◽  
Ebrahim Karimi ◽  
Mahmood Akhlaghi ◽  
Zahra Amini ◽  
Ali Mohammadi ◽  
...  

Abstract Background and aimsThe application of chemical fungicides is the first strategy to control plant fungal diseases. This approach is highly polluting for the environment and affects human health. Artificial introduction of beneficial rhizobacteria into the soil can be an economical and practical way to control phytopathogenic fungi in commercial greenhouses. Here, we recount the travel of a rare Actinomycete (Amycolatopsis strain 1119) from a maize field to a commercial cucumber greenhouse.Methods and resultsCulturable bacteria from rhizosphere and bulk soils of dicot and monocot crops were isolated and screened. About 20% of the representative colonies showed Actinomycetes appearance. 106 Actinomycetes that had antagonistic activity against Phytophthora capsici and were able to produce IAA were selected for further analysis. Two Streptomyces strains (432 and 615) and 2 Amycolatopsis strains (3513 and 1119) that showed a positive effect on plant growth in greenhouse conditions were selected to evaluate for biocontrol potential. Strains 432, 3513, 615 and 1119 controlled incidence of the damping-off by 65%, 42%, 83% and 100% respectively. Application of strain 1119 under commercial greenhouse conditions resulted in an increase in fruit yield (20%) and a decrease in fruit nitrate content (70%). Increased antioxidant enzymes activity and increased LOX and APX transcription and also, increased expression of two genes PR1-1a and GLU (SAR genes) showed that strain 1119 could induce both ISR and SAR in cucumber without pathogen exposure. Conclusion Our results demonstrate that the Amycolatopsis strain 1119, has a great potential to enter the market as a bio-stimulator.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mari Kurokawa ◽  
Masataka Nakano ◽  
Nobutaka Kitahata ◽  
Kazuyuki Kuchitsu ◽  
Toshiki Furuya

AbstractMicroorganisms that activate plant immune responses have attracted considerable attention as potential biocontrol agents in agriculture because they could reduce agrochemical use. However, conventional methods to screen for such microorganisms using whole plants and pathogens are generally laborious and time consuming. Here, we describe a general strategy using cultured plant cells to identify microorganisms that activate plant defense responses based on plant–microbe interactions. Microbial cells were incubated with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses secreted by an oomycete. Cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells served as a marker to evaluate the potential of microorganisms to activate plant defense responses. Twenty-nine bacterial strains isolated from the interior of Brassica rapa var. perviridis plants were screened, and 8 strains that enhanced cryptogein-induced ROS production in BY-2 cells were selected. Following application of these strains to the root tip of Arabidopsis seedlings, two strains, Delftia sp. BR1R-2 and Arthrobacter sp. BR2S-6, were found to induce whole-plant resistance to bacterial pathogens (Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovora subsp. carotovora NBRC 14082). Pathogen-induced expression of plant defense-related genes (PR-1, PR-5, and PDF1.2) was enhanced by the pretreatment with strain BR1R-2. This cell–cell interaction-based platform is readily applicable to large-scale screening for microorganisms that enhance plant defense responses under various environmental conditions.


2021 ◽  
Vol 22 (8) ◽  
pp. 4214
Author(s):  
Gautam Anand ◽  
Meirav Leibman-Markus ◽  
Dorin Elkabetz ◽  
Maya Bar

Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)–Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-β-xylanases that hydrolyze within the xylan structure, and the β-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst.


1995 ◽  
Vol 92 (10) ◽  
pp. 4134-4137 ◽  
Author(s):  
Z. Chen ◽  
J. Malamy ◽  
J. Henning ◽  
U. Conrath ◽  
P. Sanchez-Casas ◽  
...  

1998 ◽  
Vol 39 (11) ◽  
pp. 1245-1249 ◽  
Author(s):  
A. Kiba ◽  
M. Sugimoto ◽  
K. Toyoda ◽  
Y. Ichinose ◽  
T. Yamada ◽  
...  

1990 ◽  
Vol 45 (6) ◽  
pp. 569-575 ◽  
Author(s):  
Dierk Scheel ◽  
Jane E. Parker

Abstract Plants defend themselves against pathogen attack by activating a whole set of defense responses, most of them relying on transcriptional activation of plant defense genes. The same responses are induced by treatment of plant cells with elicitors released from the pathogen or from the plant surface. Several plant/elicitor combinations have been used successfully as experimental systems to investigate the molecular basis of plant defense responses. Receptor-like structures on the plasma membrane of plant cells appear to bind the elicitors. Thereby, intracellular signal transduction chains are initiated which finally result in the activation of plant defense genes. A better understanding of the molecular mechanisms of early processes in plant defense responses, as provided by these studies, may in the long term help to develop environmentally safe plant protection methods for agriculture.


Sign in / Sign up

Export Citation Format

Share Document