Evaluating high resolution SPOT 5 satellite imagery to estimate crop yield

2009 ◽  
Vol 10 (4) ◽  
pp. 292-303 ◽  
Author(s):  
C. Yang ◽  
J. H. Everitt ◽  
J. M. Bradford
2011 ◽  
Vol 75 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Chenghai Yang ◽  
James H. Everitt ◽  
Dale Murden

Author(s):  
Devrim Akca ◽  
Efstratios Stylianidis ◽  
Konstantinos Smagas ◽  
Martin Hofer ◽  
Daniela Poli ◽  
...  

Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView – 3, SPOT – 5 HRS, SPOT – 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in six case studies located in Austria, Cyprus, Spain, Switzerland and Turkey, using optical data from different sensors and with the purpose to monitor forest with different geometric characteristics. The validation run on Cyprus dataset is reported and commented.


Author(s):  
Devrim Akca ◽  
Efstratios Stylianidis ◽  
Konstantinos Smagas ◽  
Martin Hofer ◽  
Daniela Poli ◽  
...  

Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView – 3, SPOT – 5 HRS, SPOT – 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in six case studies located in Austria, Cyprus, Spain, Switzerland and Turkey, using optical data from different sensors and with the purpose to monitor forest with different geometric characteristics. The validation run on Cyprus dataset is reported and commented.


Author(s):  
Vincentius P. Siregar ◽  
Sam Wouthuyzen ◽  
Andriani Sunuddin ◽  
Ari Anggoro ◽  
Ade Ayu Mustika

Shallow marine waters comprise diverse benthic types forming habitats for reef fish community, which important for the livelihood of coastal and small island inhabitants. Satellite imagery provide synoptic map of benthic habitat and further utilized to estimate reef fish stock. The objective of this research was to estimate reef fish stock in complex coral reef of Pulau Pari, by utilizing high resolution satellite imagery of the WorldView-2 in combination with field data such as visual census of reef fish. Field survey was conducted between May-August 2013 with 160 sampling points representing four sites (north, south, west, and east). The image was analy-zed and grouped into five classes of benthic habitats i.e., live coral (LC), dead coral (DC), sand (Sa), seagrass (Sg), and mix (Mx) (combination seagrass+coral and seagrass+sand). The overall accuracy of benthic habitat map was 78%. Field survey revealed that the highest live coral cover (58%) was found at the north site with fish density 3.69 and 1.50 ind/m2at 3 and 10 m depth, respectively. Meanwhile, the lowest live coral cover (18%) was found at the south site with fish density 2.79 and 2.18  ind/m2 at 3 and 10 m depth, respectively. Interpolation on fish density data in each habitat class resulted in standing stock reef fish estimation:  LC (5,340,698 ind), DC (56,254,356 ind), Sa (13,370,154 ind), Sg (1,776,195 ind) and Mx (14,557,680 ind). Keywords: mapping, satellite imagery, benthic habitat, reef fish, stock estimation


1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


Land ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 193
Author(s):  
Ali Alghamdi ◽  
Anthony R. Cummings

The implications of change on local processes have attracted significant research interest in recent times. In urban settings, green spaces and forests have attracted much attention. Here, we present an assessment of change within the predominantly desert Middle Eastern city of Riyadh, an understudied setting. We utilized high-resolution SPOT 5 data and two classification techniques—maximum likelihood classification and object-oriented classification—to study the changes in Riyadh between 2004 and 2014. Imagery classification was completed with training data obtained from the SPOT 5 dataset, and an accuracy assessment was completed through a combination of field surveys and an application developed in ESRI Survey 123 tool. The Survey 123 tool allowed residents of Riyadh to present their views on land cover for the 2004 and 2014 imagery. Our analysis showed that soil or ‘desert’ areas were converted to roads and buildings to accommodate for Riyadh’s rapidly growing population. The object-oriented classifier provided higher overall accuracy than the maximum likelihood classifier (74.71% and 73.79% vs. 92.36% and 90.77% for 2004 and 2014). Our work provides insights into the changes within a desert environment and establishes a foundation for understanding change in this understudied setting.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 648
Author(s):  
Guie Li ◽  
Zhongliang Cai ◽  
Yun Qian ◽  
Fei Chen

Enriching Asian perspectives on the rapid identification of urban poverty and its implications for housing inequality, this paper contributes empirical evidence about the utility of image features derived from high-resolution satellite imagery and machine learning approaches for identifying urban poverty in China at the community level. For the case of the Jiangxia District and Huangpi District of Wuhan, image features, including perimeter, line segment detector (LSD), Hough transform, gray-level cooccurrence matrix (GLCM), histogram of oriented gradients (HoG), and local binary patterns (LBP), are calculated, and four machine learning approaches and 25 variables are applied to identify urban poverty and relatively important variables. The results show that image features and machine learning approaches can be used to identify urban poverty with the best model performance with a coefficient of determination, R2, of 0.5341 and 0.5324 for Jiangxia and Huangpi, respectively, although some differences exist among the approaches and study areas. The importance of each variable differs for each approach and study area; however, the relatively important variables are similar. In particular, four variables achieved relatively satisfactory prediction results for all models and presented obvious differences in varying communities with different poverty levels. Housing inequality within low-income neighborhoods, which is a response to gaps in wealth, income, and housing affordability among social groups, is an important manifestation of urban poverty. Policy makers can implement these findings to rapidly identify urban poverty, and the findings have potential applications for addressing housing inequality and proving the rationality of urban planning for building a sustainable society.


2007 ◽  
Vol 135 (12) ◽  
pp. 4202-4213 ◽  
Author(s):  
Yarice Rodriguez ◽  
David A. R. Kristovich ◽  
Mark R. Hjelmfelt

Abstract Premodification of the atmosphere by upwind lakes is known to influence lake-effect snowstorm intensity and locations over downwind lakes. This study highlights perhaps the most visible manifestation of the link between convection over two or more of the Great Lakes lake-to-lake (L2L) cloud bands. Emphasis is placed on L2L cloud bands observed in high-resolution satellite imagery on 2 December 2003. These L2L cloud bands developed over Lake Superior and were modified as they passed over Lakes Michigan and Erie and intervening land areas. This event is put into a longer-term context through documentation of the frequency with which lake-effect and, particularly, L2L cloud bands occurred over a 5-yr time period over different areas of the Great Lakes region.


Sign in / Sign up

Export Citation Format

Share Document