scholarly journals The system of self-consistent QSPR-models for refractive index of polymers

Author(s):  
Andrey A. Toropov ◽  
Alla P. Toropova ◽  
Valentin O. Kudyshkin
2010 ◽  
Vol 111 (4) ◽  
pp. 904-913 ◽  
Author(s):  
Kristian O. Sylvester-Hvid ◽  
Kurt V. Mikkelsen ◽  
Mark A. Ratner

Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 127
Author(s):  
Francesco Belgiorno ◽  
Sergio L. Cacciatori

We review some aspects of our longstanding research concerning the analogous Hawking effect in dispersive dielectric media. We introduce nonlinear contributions in the polarization field in the relativistically covariant version of the Hopfield model and then, in order to provide a simplified description aimed at avoiding some subtleties in the quantization of the original model, we discuss the so-called ϕψ-model. We show that the nonlinearity allows for introducing in a self-consistent way the otherwise phenomenological dependence of the susceptibility and of the resonance frequency ω0 on the spacetime variables, and this is a consequence of the linearization of the model around solitonic solutions representing propagating perturbations of the refractive index, to be then associated with the Hawking effect.


1999 ◽  
Vol 173 ◽  
pp. 37-44
Author(s):  
M.D. Melita ◽  
A. Brunini

AbstractA self-consistent study of the formation of planetary bodies beyond the orbit of Saturn and the evolution of Kuiper disks is carried out by means of an N-body code where accretion and gravitational encounters are considered. This investigation is focused on the aggregation of massive bodies in the outer planetary region and on the consequences of such process in the corresponding cometary belt. We study the link between the bombardment of massive bodies and mass depletion and eccentricity excitation.


Author(s):  
W. E. Lee

An optical waveguide consists of a several-micron wide channel with a slightly different index of refraction than the host substrate; light can be trapped in the channel by total internal reflection.Optical waveguides can be formed from single-crystal LiNbO3 using the proton exhange technique. In this technique, polished specimens are masked with polycrystal1ine chromium in such a way as to leave 3-13 μm wide channels. These are held in benzoic acid at 249°C for 5 minutes allowing protons to exchange for lithium ions within the channels causing an increase in the refractive index of the channel and creating the waveguide. Unfortunately, optical measurements often reveal a loss in waveguiding ability up to several weeks after exchange.


Author(s):  
Walter C. McCrone

An excellent chapter on this subject by V.D. Fréchette appeared in a book edited by L.L. Hench and R.W. Gould in 1971 (1). That chapter with the references cited there provides a very complete coverage of the subject. I will add a more complete coverage of an important polarized light microscope (PLM) technique developed more recently (2). Dispersion staining is based on refractive index and its variation with wavelength (dispersion of index). A particle of, say almandite, a garnet, has refractive indices of nF = 1.789 nm, nD = 1.780 nm and nC = 1.775 nm. A Cargille refractive index liquid having nD = 1.780 nm will have nF = 1.810 and nC = 1.768 nm. Almandite grains will disappear in that liquid when observed with a beam of 589 nm light (D-line), but it will have a lower refractive index than that liquid with 486 nm light (F-line), and a higher index than that liquid with 656 nm light (C-line).


Sign in / Sign up

Export Citation Format

Share Document