Floor plan optimization for indoor environment based on multimodal data

Author(s):  
Shinjin Kang ◽  
Soo Kyun Kim
Author(s):  
Zhigang Zhu ◽  
Jin Chen ◽  
Lei Zhang ◽  
Yaohua Chang ◽  
Tyler Franklin ◽  
...  

The iASSIST is an iPhone-based assistive sensor solution for independent and safe travel for people who are blind or visually impaired, or those who simply face challenges in navigating an unfamiliar indoor environment. The solution integrates information of Bluetooth beacons, data connectivity, visual models, and user preferences. Hybrid models of interiors are created in a modeling stage with these multimodal data, collected, and mapped to the floor plan as the modeler walks through the building. Client-server architecture allows scaling to large areas by lazy-loading models according to beacon signals and/or adjacent region proximity. During the navigation stage, a user with the navigation app is localized within the floor plan, using visual, connectivity, and user preference data, along an optimal route to their destination. User interfaces for both modeling and navigation use multimedia channels, including visual, audio, and haptic feedback for targeted users. The design of human subject test experiments is also described, in addition to some preliminary experimental results.


Author(s):  
Man Xu ◽  
Shuangfeng Wei ◽  
Sisi Zlatanova

The demand for indoor navigation is increasingly urgent in many applications such as safe management of underground spaces or location services in complex indoor environment, e.g. shopping centres, airports, museums, underground parking lot and hospitals. Indoor navigation is still a challenging research field, as currently applied indoor navigation algorithms commonly ignore important environmental and human factors and therefore do not provide precise navigation. Flexible and detailed networks representing the connectivity of spaces and considering indoor objects such as furniture are very important to a precise navigation. In this paper we concentrate on indoor navigation considering obstacles represented as polygons. We introduce a specific space subdivision based on a simplified floor plan to build the indoor navigation network. The experiments demonstrate that we are able to navigate around the obstacles using the proposed network. Considering to well-known path-finding approaches based on Medial Axis Transform (MAT) or Visibility Graph (VG), the approach in this paper provides a quick subdivision of space and routes, which are compatible with the results of VG.


Author(s):  
Giacomo Ripamonti ◽  
Stefano Michelis ◽  
Pietro Buccella ◽  
Adil Koukab ◽  
Maher Kayal
Keyword(s):  

Author(s):  
Man Xu ◽  
Shuangfeng Wei ◽  
Sisi Zlatanova

The demand for indoor navigation is increasingly urgent in many applications such as safe management of underground spaces or location services in complex indoor environment, e.g. shopping centres, airports, museums, underground parking lot and hospitals. Indoor navigation is still a challenging research field, as currently applied indoor navigation algorithms commonly ignore important environmental and human factors and therefore do not provide precise navigation. Flexible and detailed networks representing the connectivity of spaces and considering indoor objects such as furniture are very important to a precise navigation. In this paper we concentrate on indoor navigation considering obstacles represented as polygons. We introduce a specific space subdivision based on a simplified floor plan to build the indoor navigation network. The experiments demonstrate that we are able to navigate around the obstacles using the proposed network. Considering to well-known path-finding approaches based on Medial Axis Transform (MAT) or Visibility Graph (VG), the approach in this paper provides a quick subdivision of space and routes, which are compatible with the results of VG.


2019 ◽  
Vol 14 (4) ◽  
pp. 815-820
Author(s):  
Navid Ayoobi ◽  
Mohammad Ghavami ◽  
Amir Masoud Rabiei

AbstractIn recent years, the number of location-based services is increasing and consequently, the researchers’ attentions are captivated in designing accurate real-time positioning systems. Despite having a good performance in outdoor environment, global positioning system is not capable of estimating an object’s position in an indoor environment precisely. In this paper, we present a novel tracking algorithm for indoor environment with a known floor plan. The object location is estimated by utilizing the information of the multipath components which are created by one physical and some virtual anchors. We will link this information to the floor plan by defining a channel model that has a combination of stochastic and deterministic traits. As we have used only one physical anchor in this paper, we would encounter several challenges such as lack of data association and existence of clutters amid real data. We dealt with these problems through random finite set methodology. Additionally, we will demonstrate that the proposed method is not restricted by the model of the motion and is capable to precisely track the trajectory. It will be shown that it provides a better accuracy, particularly in nonlinear trajectories, compared with two other relevant models which are adopting linear motion model.


Author(s):  
David Romero ◽  
Aydin Nabovati ◽  
Gamal Refai-Ahmed ◽  
Daniel P. Sellan ◽  
Saeed Ghalambor ◽  
...  

In current and next-generation semiconductor electronic devices, sub-continuum heat transfer effects and non-uniform power distribution across the die surface lead to large temperature gradients and localized hot spots on the die. These hot spots can adversely affect device performance and reliability. In this work, we propose an enhanced method for thermal map prediction that considers sub-continuum thermal transport effects and show their impact in floor plan optimization. Sub-continuum effects are expressed in terms of an effective thermal conductivity. We introduce and calibrate a 2D thermal model of the die for fast simulation of thermal effects under non-uniform power generation scenarios. The calibrated 2D model is then used to study the impact of the effective thermal conductivity on the thermal map prediction and floor plan optimization. Results show that sub-continuum effects radically change both the predicted thermal performance and the optimal floor plan configurations.


2014 ◽  
Author(s):  
Robert J. Wolter ◽  
Kassandra Hauptmann ◽  
Alycia Hund
Keyword(s):  

Author(s):  
Juil Jeon ◽  
Juyoung Kim ◽  
Myoungin Ji ◽  
Youngsu Cho ◽  
Andrea Lingua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document