scholarly journals A novel motion-model-free UWB short-range positioning method

2019 ◽  
Vol 14 (4) ◽  
pp. 815-820
Author(s):  
Navid Ayoobi ◽  
Mohammad Ghavami ◽  
Amir Masoud Rabiei

AbstractIn recent years, the number of location-based services is increasing and consequently, the researchers’ attentions are captivated in designing accurate real-time positioning systems. Despite having a good performance in outdoor environment, global positioning system is not capable of estimating an object’s position in an indoor environment precisely. In this paper, we present a novel tracking algorithm for indoor environment with a known floor plan. The object location is estimated by utilizing the information of the multipath components which are created by one physical and some virtual anchors. We will link this information to the floor plan by defining a channel model that has a combination of stochastic and deterministic traits. As we have used only one physical anchor in this paper, we would encounter several challenges such as lack of data association and existence of clutters amid real data. We dealt with these problems through random finite set methodology. Additionally, we will demonstrate that the proposed method is not restricted by the model of the motion and is capable to precisely track the trajectory. It will be shown that it provides a better accuracy, particularly in nonlinear trajectories, compared with two other relevant models which are adopting linear motion model.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Jae-Hoon Kim ◽  
Kyoung Sik Min ◽  
Woon-Young Yeo

The rapid growth of mobile communication and the proliferation of smartphones have drawn significant attention to location-based services (LBSs). One of the most important factors in the vitalization of LBSs is the accurate position estimation of a mobile device. The Wi-Fi positioning system (WPS) is a new positioning method that measures received signal strength indication (RSSI) data from all Wi-Fi access points (APs) and stores them in a large database as a form of radio fingerprint map. Because of the millions of APs in urban areas, radio fingerprints are seriously contaminated and confused. Moreover, the algorithmic advances for positioning face computational limitation. Therefore, we present a novel irregular grid structure and data analytics for efficient fingerprint map management. The usefulness of the proposed methodology is presented using the actual radio fingerprint measurements taken throughout Seoul, Korea.


2021 ◽  
Vol 11 (15) ◽  
pp. 6891
Author(s):  
Yanjie Liu ◽  
Changsen Zhao ◽  
Yanlong Wei

The PHD (Probability Hypothesis Density) filter is a sub-optimal multi-target Bayesian filter based on a random finite set, which is widely used in the tracking and estimation of dynamic objects in outdoor environments. Compared with the outdoor environment, the indoor environment space and the shape of dynamic objects are relatively small, which puts forward higher requirements on the estimation accuracy and response speed of the filter. This paper proposes a method for fast and high-precision estimation of the dynamic objects’ velocity for mobile robots in an indoor environment. First, the indoor environment is represented as a dynamic grid map, and the state of dynamic objects is represented by its grid cells state as random finite sets. The estimation of dynamic objects’ speed information is realized by using the measurement-driven particle-based PHD filter. Second, we bound the dynamic grid map to the robot coordinate system and derived the update equation of the state of the particles with the movement of the robot. At the same time, in order to improve the perception accuracy and speed of the filter for dynamic targets, the CS (Current Statistical) motion model is added to the CV (Constant Velocity) motion model, and interactive resampling is performed to achieve the combination of the advantages of the two. Finally, in the Gazebo simulation environment based on ROS (Robot Operating System), the speed estimation and accuracy analysis of the square and cylindrical dynamic objects were carried out respectively when the robot was stationary and in motion. The results show that the proposed method has a great improvement in effect compared with the existing methods.


Author(s):  
C. Guney

Satellite navigation systems with GNSS-enabled devices, such as smartphones, car navigation systems, have changed the way users travel in outdoor environment. GNSS is generally not well suited for indoor location and navigation because of two reasons: First, GNSS does not provide a high level of accuracy although indoor applications need higher accuracies. Secondly, poor coverage of satellite signals for indoor environments decreases its accuracy. So rather than using GNSS satellites within closed environments, existing indoor navigation solutions rely heavily on installed sensor networks. There is a high demand for accurate positioning in wireless networks in GNSS-denied environments. However, current wireless indoor positioning systems cannot satisfy the challenging needs of indoor location-aware applications. Nevertheless, access to a user’s location indoors is increasingly important in the development of context-aware applications that increases business efficiency. In this study, how can the current wireless location sensing systems be tailored and integrated for specific applications, like smart cities/grids/buildings/cars and IoT applications, in GNSS-deprived areas.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 511 ◽  
Author(s):  
Aghil Esmaeili Kelishomi ◽  
A.H.S Garmabaki ◽  
Mahdi Bahaghighat ◽  
Jianmin Dong

An automatic, fast, and accurate switching method between Global Positioning System and indoor positioning systems is crucial to achieve current user positioning, which is essential information for a variety of services installed on smart devices, e.g., location-based services (LBS), healthcare monitoring components, and seamless indoor/outdoor navigation and localization (SNAL). In this study, we proposed an approach to accurately detect the indoor/outdoor environment according to six different daily activities of users including walk, skip, jog, stay, climbing stairs up and down. We select a number of features for each activity and then apply ensemble learning methods such as Random Forest, and AdaBoost to classify the environment types. Extensive model evaluations and feature analysis indicate that the system can achieve a high detection rate with good adaptation for environment recognition. Empirical evaluation of the proposed method has been verified on the HASC-2016 public dataset, and results show 99% accuracy to detect environment types. The proposed method relies only on the daily life activities data and does not need any external facilities such as the signal cell tower or Wi-Fi access points. This implies the applicability of the proposed method for the upper layer applications.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3955
Author(s):  
Jung-Cheng Yang ◽  
Chun-Jung Lin ◽  
Bing-Yuan You ◽  
Yin-Long Yan ◽  
Teng-Hu Cheng

Most UAVs rely on GPS for localization in an outdoor environment. However, in GPS-denied environment, other sources of localization are required for UAVs to conduct feedback control and navigation. LiDAR has been used for indoor localization, but the sampling rate is usually too low for feedback control of UAVs. To compensate this drawback, IMU sensors are usually fused to generate high-frequency odometry, with only few extra computation resources. To achieve this goal, a real-time LiDAR inertial odometer system (RTLIO) is developed in this work to generate high-precision and high-frequency odometry for the feedback control of UAVs in an indoor environment, and this is achieved by solving cost functions that consist of the LiDAR and IMU residuals. Compared to the traditional LIO approach, the initialization process of the developed RTLIO can be achieved, even when the device is stationary. To further reduce the accumulated pose errors, loop closure and pose-graph optimization are also developed in RTLIO. To demonstrate the efficacy of the developed RTLIO, experiments with long-range trajectory are conducted, and the results indicate that the RTLIO can outperform LIO with a smaller drift. Experiments with odometry benchmark dataset (i.e., KITTI) are also conducted to compare the performance with other methods, and the results show that the RTLIO can outperform ALOAM and LOAM in terms of exhibiting a smaller time delay and greater position accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2000
Author(s):  
Marius Laska ◽  
Jörg Blankenbach

Location-based services (LBS) have gained increasing importance in our everyday lives and serve as the foundation for many smartphone applications. Whereas Global Navigation Satellite Systems (GNSS) enable reliable position estimation outdoors, there does not exist any comparable gold standard for indoor localization yet. Wireless local area network (WLAN) fingerprinting is still a promising and widely adopted approach to indoor localization, since it does not rely on preinstalled hardware but uses the existing WLAN infrastructure typically present in buildings. The accuracy of the method is, however, limited due to unstable fingerprints, etc. Deep learning has recently gained attention in the field of indoor localization and is also utilized to increase the performance of fingerprinting-based approaches. Current solutions can be grouped into models that either estimate the exact position of the user (regression) or classify the area (pre-segmented floor plan) or a reference location. We propose a model, DeepLocBox (DLB), that offers reliable area localization in multi-building/multi-floor environments without the prerequisite of a pre-segmented floor plan. Instead, the model predicts a bounding box that contains the user’s position while minimizing the required prediction space (size of the box). We compare the performance of DLB with the standard approach of neural network-based position estimation and demonstrate that DLB achieves a gain in success probability by 9.48% on a self-collected dataset at RWTH Aachen University, Germany; by 5.48% for a dataset provided by Tampere University of Technology (TUT), Finland; and by 3.71% for the UJIIndoorLoc dataset collected at Jaume I University (UJI) campus, Spain.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Bilal Aghoutane ◽  
Mohammed El Ghzaoui ◽  
Hanan El Faylali

AbstractThe aim of this work consists in characterizing the Terahertz (THz) propagation channel in an indoor environment, in order to propose a channel model for THz bands. We first described a propagation loss model by taking into account the attenuation of the channel as a function of distance and frequency. The impulse response of the channel is then described by a set of rays, characterized by their amplitude, their delay and their phase. Apart from the frequency selective nature, path loss in THz band is also an others issue associated with THz communication systems. This work based on the conventional Saleh-Valenzuela (SV) model which is intended for indoor scenarios. In this paper, we have introduced random variables as Line of sight (LOS) component, and then merging it with the SV channel model to adopt it to the THz context. From simulation, we noted an important effect when the distance between the transmitter and the receiver change. This effect produces variations in frequency loss. The simulations carried out from this model show that to enhance the performance of THz system it is recommended to transmit information over transmission windows instead over the whole band.


2021 ◽  
Vol 11 (15) ◽  
pp. 6805
Author(s):  
Khaoula Mannay ◽  
Jesús Ureña ◽  
Álvaro Hernández ◽  
José M. Villadangos ◽  
Mohsen Machhout ◽  
...  

Indoor positioning systems have become a feasible solution for the current development of multiple location-based services and applications. They often consist of deploying a certain set of beacons in the environment to create a coverage volume, wherein some receivers, such as robots, drones or smart devices, can move while estimating their own position. Their final accuracy and performance mainly depend on several factors: the workspace size and its nature, the technologies involved (Wi-Fi, ultrasound, light, RF), etc. This work evaluates a 3D ultrasonic local positioning system (3D-ULPS) based on three independent ULPSs installed at specific positions to cover almost all the workspace and position mobile ultrasonic receivers in the environment. Because the proposal deals with numerous ultrasonic emitters, it is possible to determine different time differences of arrival (TDOA) between them and the receiver. In that context, the selection of a suitable fusion method to merge all this information into a final position estimate is a key aspect of the proposal. A linear Kalman filter (LKF) and an adaptive Kalman filter (AKF) are proposed in that regard for a loosely coupled approach, where the positions obtained from each ULPS are merged together. On the other hand, as a tightly coupled method, an extended Kalman filter (EKF) is also applied to merge the raw measurements from all the ULPSs into a final position estimate. Simulations and experimental tests were carried out and validated both approaches, thus providing average errors in the centimetre range for the EKF version, in contrast to errors up to the meter range from the independent (not merged) ULPSs.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Sign in / Sign up

Export Citation Format

Share Document