scholarly journals Lessons from the Large Hadron Collider for model-based experimentation: the concept of a model of data acquisition and the scope of the hierarchy of models

Synthese ◽  
2017 ◽  
Vol 195 (12) ◽  
pp. 5431-5452 ◽  
Author(s):  
Koray Karaca
2010 ◽  
Vol 25 (10) ◽  
pp. 749-766
Author(s):  
VIVIAN O'DELL

The CMS Trigger and Data Acquisition Systems have been installed and commissioned and are awaiting data at the Large Hadron Collider. In this article, we describe what factors drove the design and architecture of the systems.


2020 ◽  
Vol 245 ◽  
pp. 07044
Author(s):  
Frank Berghaus ◽  
Franco Brasolin ◽  
Alessandro Di Girolamo ◽  
Marcus Ebert ◽  
Colin Roy Leavett-Brown ◽  
...  

The Simulation at Point1 (Sim@P1) project was built in 2013 to take advantage of the ATLAS Trigger and Data Acquisition High Level Trigger (HLT) farm. The HLT farm provides around 100,000 cores, which are critical to ATLAS during data taking. When ATLAS is not recording data, such as the long shutdowns of the LHC, this large compute resource is used to generate and process simulation data for the experiment. At the beginning of the second long shutdown of the large hadron collider, the HLT farm including the Sim@P1 infrastructure was upgraded. Previous papers emphasised the need for simple, reliable, and efficient tools and assessed various options to quickly switch between data acquisition operation and offline processing. In this contribution, we describe the new mechanisms put in place for the opportunistic exploitation of the HLT farm for offline processing and give the results from the first months of operation.


2021 ◽  
Vol 251 ◽  
pp. 04019
Author(s):  
Andrei Kazarov ◽  
Adrian Chitan ◽  
Andrei Kazymov ◽  
Alina Corso-Radu ◽  
Igor Aleksandrov ◽  
...  

The ATLAS experiment at the Large Hadron Collider (LHC) operated very successfully in the years 2008 to 2018, in two periods identified as Run 1 and Run 2. ATLAS achieved an overall data-taking efficiency of 94%, largely constrained by the irreducible dead-time introduced to accommodate the limitations of the detector read-out electronics. Out of the 6% dead-time only about 15% could be attributed to the central trigger and DAQ system, and out of these, a negligible fraction was due to the Control and Configuration subsystem. Despite these achievements, and in order to improve even more the already excellent efficiency of the whole DAQ system in the coming Run 3, a new campaign of software updates was launched for the second long LHC shutdown (LS2). This paper presents, using a few selected examples, how the work was approached and which new technologies were introduced into the ATLAS Control and Configuration software. Despite these being specific to this system, many solutions can be considered and adapted to different distributed DAQ systems.


2011 ◽  
Vol 26 (27n28) ◽  
pp. 4687-4701
Author(s):  
DIETER LÜST

We consider extensions of the Standard Model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC).


Author(s):  
Sergio Cittolin

The Large Hadron Collider detectors are technological marvels—which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels—capable of observing proton–proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10 5 . The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy ◽  
Matthew J. Smylie

Abstract In this work we study the collider phenomenology of color-octet scalars (sgluons) in minimal supersymmetric models endowed with a global continuous R symmetry. We systematically catalog the significant decay channels of scalar and pseudoscalar sgluons and identify novel features that are natural in these models. These include decays in nonstandard diboson channels, such as to a gluon and a photon; three-body decays with considerable branching fractions; and long-lived particles with displaced vertex signatures. We also discuss the single and pair production of these particles and show that they can evade existing constraints from the Large Hadron Collider, to varying extents, in large regions of reasonable parameter space. We find, for instance, that a 725 GeV scalar and a 350 GeV or lighter pseudoscalar can still be accommodated in realistic scenarios.


Author(s):  
S. A. Antipov ◽  
N. Biancacci ◽  
J. Komppula ◽  
E. Métral ◽  
B. Salvant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document