scholarly journals Plant tissue culture environment as a switch-key of (epi)genetic changes

2019 ◽  
Vol 140 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Piotr Tomasz Bednarek ◽  
Renata Orłowska

Abstract The in vitro tissue cultures are, beyond all difficulties, an essential tool in basic research as well as in commercial applications. Numerous works devoted to plant tissue cultures proved how important this part of the plant science is. Despite half a century of research on the issue of obtaining plants in in vitro cultures, many aspects remain unknown. The path associated with the reprogramming of explants in the fully functioning regenerants includes a series of processes that may result in the appearance of morphological, physiological, biochemical or, finally, genetic and epigenetic changes. All these changes occurring at the tissue culture stage and appearing in regenerants as tissue culture-induced variation and then inherited by generative progeny as somaclonal variation may be the result of oxidative stress, which works at the step of explant preparation, and in tissue culture as a result of nutrient components and environmental factors. In this review, we describe the current status of understanding the genetic and epigenetic changes that occur during tissue culture.

2016 ◽  
Vol 128 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Siham Esserti ◽  
Mohamed Faize ◽  
Lalla Aicha Rifai ◽  
Amal Smaili ◽  
Malika Belfaiza ◽  
...  

2016 ◽  
Vol 127 (3) ◽  
pp. 543-559 ◽  
Author(s):  
Ileana Gatti ◽  
Fernanda Guindón ◽  
Carolina Bermejo ◽  
Andrea Espósito ◽  
Enrique Cointry

Planta ◽  
2018 ◽  
Vol 248 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Claudia A. Espinosa-Leal ◽  
César A. Puente-Garza ◽  
Silverio García-Lara

2018 ◽  
Vol 28 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Mohammad Ali ◽  
Shefali Boonerjee ◽  
Mohammad Nurul Islam ◽  
Mihir Lal Saha ◽  
M Imdadul Hoque ◽  
...  

The endogenous bacterial contamination of plant tissue culture materials and their possible control was studied. Nine bacterial isolates were isolated from the contaminated tissue culture materials viz. potato and tea. On the basis of morphology and biochemical characters of nine isolates, seven were identified as Gram positive belonging to Bacillus alcalophilus, B. circulans, B. infantis, B. lentus, B. schlegelii, B. pumilus and B. subtilis. Remaining two were Gram negative and identified as Enterobacter cloacae sub. sp. dissolvens and Pantoea agglomerans. Molecular analysis was conducted on the basis of 16S rDNA sequence to confirm three isolates. Culture and sensitivity test was carried out to screen out the antibiotic sensitivity where streptomycin (S-10), polymyxin (PB-300) and gentamicin (CN-120) antibiotics were found to be effective against all bacterial isolates. The culture and sensitivity test reflected the feasibility to control or eliminate the contaminant bacteria during in vitro culture of plant which is very much required in the commercial tissue culture production.Plant Tissue Cult. & Biotech. 28(1): 99-108, 2018 (June)


2007 ◽  
Vol 46 (11) ◽  
pp. 2138 ◽  
Author(s):  
Ana Celia Muñoz-Muñoz ◽  
Humberto Gutiérrez-Pulido ◽  
José Manuel Rodríguez-Domínguez ◽  
Antonia Gutiérrez-Mora ◽  
Benjamín Rodríguez-Garay ◽  
...  

1999 ◽  
Vol 64 (9) ◽  
pp. 1497-1509 ◽  
Author(s):  
Petra Kučerová ◽  
Martina Macková ◽  
Ludmila Poláchová ◽  
Jiří Burkhard ◽  
Kateřina Demnerová ◽  
...  

The ability of plant cells cultivated in vitro to metabolize polychlorinated biphenyls (PCBs) was correlated with the morphology of the cultures tested as models for phytoremediation studies. More differentiated cultures showed generally higher transformation capacity. The ability of plant cells to transform PCBs is connected to their viability in the presence of PCBs and their behaviour can be positively correlated with the production of intracellular and extracellular peroxidases. The cultures with high PCB-transforming activity proved to exhibit high peroxidase activity in the presence of PCBs while those with low ability to metabolize PCB showed a decrease of the enzyme activity in the presence of PCBs. Experiments with propylgallate were used to distinguish the ratio of involvement of peroxidases in PCB metabolism.


2004 ◽  
Vol 4 (1) ◽  
pp. 46-49 ◽  
Author(s):  
A. Nepovím ◽  
M. Hubálek ◽  
R. Podlipná ◽  
S. Zeman ◽  
T. Vanek

1975 ◽  
Vol 8 (4) ◽  
pp. 507-522
Author(s):  
Sirkka Kontiainen ◽  
O. Mäkelä ◽  
M. Hurme

Several functions of the animal body can take place in cell or tissue cultures with almost unreduced efficiency and precision. Functions, where only one cell type is involved, often do so, but also some differentiation steps where interactions between two or more cell types are clearly needed can take place in tissue culture (Saxén et al. 1968).Most immune responses require collaboration between two or more cell types (Claman, Chaperon & Triplett, 1966; Miller & Mitchell, 1968; Feldmann & Nossal 1972c). Some of them can be easily induced in vitro but others cannot. Even when antibody responses can be induced in vitro their intensity varies a great deal. With some antigens and under some circumstances a response in vitro can be nearly as strong as one in vivo. A crude comparison can be derived from responses in vitro and in vivo to the same antigen, conjugate of hapten NIP and pneumococcal polysaccharide type III (NIP-SIll, Nakamura, Ray & Mäkelä, 1973).


Sign in / Sign up

Export Citation Format

Share Document