scholarly journals Competitive Hydrogenation and Hydrodeoxygenation of Oxygen-Substituted Aromatics over Rh/Silica: Catechol, Resorcinol and Hydroquinone

Author(s):  
Kathleen Kirkwood ◽  
S. David Jackson

AbstractThe competitive hydrogenation and hydrodeoxygenation (HDO) of dihydroxybenzene isomers, catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene) and hydroquinone (1,4-dihydroxybenzene), was studied in the liquid phase over a Rh/silica catalyst at 323 K and 3 barg hydrogen pressure. Under competitive hydrogenation conditions an order of reactivity of ortho > para > meta was observed. Catechol initially inhibited resorcinol and hydroquinone hydrogenation but not HDO suggesting separate sites for hydrogenation and HDO. When resorcinol and hydroquinone were reacted competitively, HDO became the favoured reaction. The data suggested that cyclohexane and cyclohexanone were primary products. At low dihydroxybenzene (DHB) conversion the ratio of HDO products was dependent upon DHB isomer. When all three DHB isomers were reacted together, initially 86% of the HDO yield came from catechol with the rest from hydroquinone. When resorcinol finally reacted, HDO products were produced first. Reaction of DHB isomers in pairs using deuterium instead of hydrogen revealed changes in kinetic isotope effect (KIE). The presence of competing reactants had a dramatic effect on the energetics of hydrogenation and HDO reactions of individual components, reinforcing the view that hydrogenation and HDO are mechanistically separate. This effect on reaction energetics observed when more than one substrate was present, highlights the limitations of studying one single model compound as a route to understanding the processes required for the upgrading of a true bio-oil feed.

2020 ◽  
Vol 22 (20) ◽  
pp. 11219-11243 ◽  
Author(s):  
Ken Sakaushi

The fundamental aspects of quantum electrocatalysts are discussed together with the newly developed electrochemical kinetic isotope effect (EC-KIE) approach.


1993 ◽  
Vol 290 (1) ◽  
pp. 103-107 ◽  
Author(s):  
O Smékal ◽  
M Yasin ◽  
C A Fewson ◽  
G A Reid ◽  
S K Chapman

L-Lactate dehydrogenase (L-LDH) from Saccharomyces cerevisiae and L-mandelate dehydrogenase (L-MDH) from Rhodotorula graminis are both flavocytochromes b2. The kinetic properties of these enzymes have been compared using steady-state kinetic methods. The most striking difference between the two enzymes is found by comparing their substrate specificities. L-LDH and L-MDH have mutually exclusive primary substrates, i.e. the substrate for one enzyme is a potent competitive inhibitor for the other. Molecular-modelling studies on the known three-dimensional structure of S. cerevisiae L-LDH suggest that this enzyme is unable to catalyse the oxidation of L-mandelate because productive binding is impeded by steric interference, particularly between the side chain of Leu-230 and the phenyl ring of mandelate. Another major difference between L-LDH and L-MDH lies in the rate-determining step. For S. cerevisiae L-LDH, the major rate-determining step is proton abstraction at C-2 of lactate, as previously shown by the 2H kinetic-isotope effect. However, in R. graminis L-MDH the kinetic-isotope effect seen with DL-[2-2H]mandelate is only 1.1 +/- 0.1, clearly showing that proton abstraction at C-2 of mandelate is not rate-limiting. The fact that the rate-determining step is different indicates that the transition states in each of these enzymes must also be different.


2015 ◽  
Vol 51 (24) ◽  
pp. 5032-5035 ◽  
Author(s):  
Alessia Barbieri ◽  
Martina De Gennaro ◽  
Stefano Di Stefano ◽  
Osvaldo Lanzalunga ◽  
Andrea Lapi ◽  
...  

pKa of [(N4Py)FeIII–OH]2+ is obtained from the kinetic isotope effect profiles in the N-demethylation of N,N-dimethylanilines promoted by [(N4Py)FeIVO]2+.


Sign in / Sign up

Export Citation Format

Share Document