Molecular dynamics characterization of thin film viscosity for EHL simulation

2006 ◽  
Vol 21 (3) ◽  
pp. 217-225 ◽  
Author(s):  
A. Martini ◽  
Y. Liu ◽  
R.Q. Snurr ◽  
Q. J. Wang
Author(s):  
Joanna E. Bechtel ◽  
David B. Bogy

The lubricant applied to the disk in a hard drive is a critical component for head-disk interface reliability. In Heat Assisted Magnetic Recording (HAMR), the heat supplied to the disk by the laser will add new thermal considerations to lubricant performance. Investigations into how the lubricant behaves at the small time and length scales seen in HAMR systems need to be conducted numerically. Published works on HAMR lubricant modeling have considered only the van der Waals contribution to disjoining pressure, commonly called the dispersive component, and do not consider the film thickness dependence of viscosity. However, lubricants with reactive end groups such as Fomblin Zdol are widely used, and such simple disjoining pressure and viscosity models do not capture certain lubricant behavior. We have developed a simulation tool that incorporates film thickness dependencies of viscosity and polar and dispersive disjoining pressure into a continuum lubrication model. We investigate the effect of initial thickness on lubricant flow and evaporation under HAMR write conditions considering both components of disjoining pressure and thin-film viscosity. Simulation results indicate the effect of including polar disjoining pressure depends on the initial lubricant thickness. The inclusion of viscosity thickness dependence does not affect simulation results under scanning laser conditions but will be important in reflow simulations.


1998 ◽  
Vol 31 (23) ◽  
pp. 8250-8257 ◽  
Author(s):  
Tonya L. Kuhl ◽  
Alan D. Berman ◽  
Sek Wen Hui ◽  
Jacob N. Israelachvili

Author(s):  
E. L. Hall ◽  
A. Mogro-Campero ◽  
L. G. Turner ◽  
N. Lewis

There is great interest in the growth of thin superconducting films of YBa2Cu3Ox on silicon, since this is a necessary first step in the use of this superconductor in a variety of possible electronic applications including interconnects and hybrid semiconductor/superconductor devices. However, initial experiments in this area showed that drastic interdiffusion of Si into the superconductor occurred during annealing if the Y-Ba-Cu-O was deposited direcdy on Si or SiO2, and this interdiffusion destroyed the superconducting properties. This paper describes the results of the use of a zirconia buffer layer as a diffusion barrier in the growth of thin YBa2Cu3Ox films on Si. A more complete description of the growth and characterization of these films will be published elsewhere.Thin film deposition was carried out by sequential electron beam evaporation in vacuum onto clean or oxidized single crystal Si wafers. The first layer evaporated was 0.4 μm of zirconia.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Sign in / Sign up

Export Citation Format

Share Document