Research on the Thickness of the Friction Layer of Ni3Al Matrix Composites with Graphene Nanoplatelets

2015 ◽  
Vol 59 (3) ◽  
Author(s):  
Qingshuai Zhu ◽  
Xiaoliang Shi ◽  
Wenzheng Zhai ◽  
Kang Yang ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
...  
2016 ◽  
Vol 25 (10) ◽  
pp. 4126-4133 ◽  
Author(s):  
Bing Xue ◽  
Qingshuai Zhu ◽  
Xiaoliang Shi ◽  
Wenzheng Zhai ◽  
Kang Yang ◽  
...  

2014 ◽  
Vol 55 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Qingshuai Zhu ◽  
Xiaoliang Shi ◽  
Wenzheng Zhai ◽  
Jie Yao ◽  
Ahmed Mohamed Mahmoud Ibrahim ◽  
...  

Author(s):  
Tugba Mutuk ◽  
Mevlüt Gürbüz

Abstract This study reports on silicon nitride (Si3N4) and graphene nanoplatelets binary powder reinforced hybrid titanium composites obtained by a powder metallurgy method. Si3N4 powder was added at 3 wt.% and graphene nanoplatelets were added in various amounts (0.15, 0.30, 0.45, 0.60 wt.%) in the titanium matrix. Density, micro-Vickers hardness, compressive behavior, wear properties and microstructure of the hybrid composites were evaluated. Addition of different percentages of graphene nanoplatelets and 3 wt.% Si3N4 to the titanium matrix composites significantly enhanced mechanical properties. The highest hardness (634 HV) and compressive strength (1458 MPa) values were measured for 0.15 wt.% graphene nanoplatelets and 3 wt.% Si3N4 added titanium hybrid composite. The lowest mass loss and wear rate (Δm = 4 mg, W = 6.1×10–5 mm3 (N m)–1) values were measured for the same 0.15 wt.% graphene nanoplatelets and 3 wt.% Si3N4 added titanium hybrid composite compared with pure Ti.


2018 ◽  
Vol 910 ◽  
pp. 123-129 ◽  
Author(s):  
X.N. Mu ◽  
H.N. Cai ◽  
Hong Mei Zhang ◽  
Q.B. Fan ◽  
Y. Wu

In this study, the titanium matrix composites (TiMCs) were fabricated by adding graphene nanoplatelets (GNPs). The dynamic compression test was carried out to study the effect of strain-rate and the GNPs content on dynamic mechanical properties of GNPs/Ti. Results show that the GNPs content (0wt%~0.8wt%) correspond to specific microstructure which affect the dynamic mechanical properties of the composites. Under high strain-rate (3500s-1), the 0.4wt%GNPs/Ti has the highest dynamic stress (~1860MPa) and strain (~30%). The adiabatic shearing band (ASB) microstructure of GNPs/Ti with various GNPs content has been observed under 3500s-1 strain-rate and the ASB microstructure evolution of 0.4wt%GNPs/Ti under different strain rate was investigated in particular.


2021 ◽  
pp. 002199832110558
Author(s):  
Panayiotis Ketikis ◽  
Efthimios Damopoulos ◽  
Georgios Pilatos ◽  
Panagiotis Klonos ◽  
Apostolos Kyritsis ◽  
...  

The impact of the incorporation of graphene nanoplatelets (GN) on the properties of hydroxyl-terminated poly(dimethylsiloxane) (PDMS) matrices was investigated. The composites were prepared by solution mixing, using tetrahydrofuran (THF) as a solvent. Brookfield viscosimetry, implemented during the vulcanization process, revealed that GN increases the viscosity of the system, compared to pristine PDMS, proportionally to its concentration. X-ray diffraction patterns suggested an efficient dispersion of GN in the polysiloxane matrix. The D and G bands ratio (ID/IG) calculation, based on RAMAN spectra of GN/PDMS specimens, revealed more defects in graphene nanoplatelets when incorporated in the PDMS matrix. By differential scanning calorimetry (DSC), a marginal increase in crystallization, glass transition and melting temperatures of PDMS in GN/PDMS composites was observed. Improvement of the thermal stability of LMW PDMS composites, especially for higher GN concentrations (3 and 5 phr), was noticed by thermogravimetric analysis (TGA). Additionally, GN enhanced the tensile strength of composites, up to 73% for the 3 phr GN/LMW PDMS composite. A significant increase in the elongation at break was recorded, whereas no effect on the modulus of elasticity was recorded. The decrease in toluene-swelling, for the LMW PDMS matrix composites, was attributed to the increase in the tortuosity path because of the efficient dispersion of GN. A decrease in oxygen permeability of 55–65% and 44–58% was measured in membranes made of PDMS composites containing 0.5 phr and 1 phr GN, respectively. Dielectric relaxation spectroscopy (DRS) measurements recorded a significant increase in the conductivity of the higher graphene content composites.


Sign in / Sign up

Export Citation Format

Share Document