scholarly journals Effects of a Cylinder Liner Microstructure on Lubrication Condition of a Twin-Land Oil Control Ring and a Piston Skirt of an Internal Combustion Engine

2021 ◽  
Vol 70 (1) ◽  
Author(s):  
Koji Kikuhara ◽  
Philipp S. Koeser ◽  
Tian Tian
2021 ◽  
Author(s):  
Koji Kikuhara ◽  
Philipp S Koeser ◽  
Tian Tian

Abstract It is hypothesized that the sliding surface structures improve the lubrication condition by forming an oil sump on the sliding surface, redistributing the oil, and trapping wear debris. For these reasons, the sliding surface structures have been used as a friction reduction method for a long time. However, how to optimize the sliding surface structure is still controversial. In this work, effects of microstructure laid on the cylinder liner of an internal combustion engine on twin-land oil control ring (TLOCR) and piston skirt lubrication condition were investigated by comparing friction between the conventional fine-honed liner (CFL) and the microstructured liner (MSL) which was made based on the CFL. As a result of the friction measurement using a floating liner engine, it was found that the microstructure improved lubrication condition by reducing hydrodynamic friction. On the other hand, the result showed there was a possibility that the microstructure deteriorated friction depending on the engine operating conditions.


2018 ◽  
Vol 70 (1) ◽  
pp. 140-154
Author(s):  
Fanming Meng ◽  
Minggang Du ◽  
Xianfu Wang ◽  
Yuanpei Chen ◽  
Qing Zhang

Purpose The purpose of this study is to investigate the effects of the axial piston pin motion on the tribological performances of the piston skirt and cylinder liner vibration for an internal combustion engine (ICE) under different operation conditions. Design/methodology/approach The dynamic equation for the piston incorporating into axial piston pin motion is derived first. Then, the proposed equation and associated lubrication equations are solved using the Broyden algorithm and difference method, respectively. Moreover, the axial motion of the piston pin and its slap on the cylinder liner are studied under different operation conditions. Findings The axial piston pin motion leads to an overall increase in the friction power consumption. Increments in the ICE speed and lubricant viscosity can augment the axial pin motion and cylinder liner vibration, especially in the power stroke. The said increments cause the instability of the piston motion in the cylinder. The axial motion of piston pin can be restrained through the eccentricity of the piston pin close to the thrust side of the cylinder liner. Originality/value This study conducts detailed discussions of the effect of axial piston pin motion on tribological and dynamic performances for piston skirt-cylinder liner system of an internal combustion engine and gives a helpful reference to analyses and designs of internal combustion engines.


2014 ◽  
Vol 553 ◽  
pp. 582-587
Author(s):  
Bao Cheng Zhang ◽  
Tong Li ◽  
Hai Fei Zhan ◽  
Yuan Tong Gu

A theoretical model is developed for the analysis of piston secondary motion. Based on this model, the slap force of a specific L6 diesel engine was compared when considering different boundary conditions, such as lubricating oil on cylinder liner, surface roughness, deformation of cylinder liner and piston skirt. It is concluded that it is necessary to consider the secondary motion of piston in the analysis of the inner excitation for an internal combustion engine. A more comprehensive consideration of the boundary condition (i.e., more close to the actual condition) will lead to a smaller maximum slap force, and among all boundary conditions considered in this paper, the structural deformation of the piston skirt and cylinder liner is the most influential factor. The theoretical model developed and findings obtained in this study will benefit the future analysis and design of advanced internal combustion engine structures.


2019 ◽  
Vol 71 (4) ◽  
pp. 515-524 ◽  
Author(s):  
Venkateswara Babu P. ◽  
Ismail Syed ◽  
Satish Ben Beera

Purpose In an internal combustion engine, piston ring-cylinder liner tribo pair is one among the most critical rubbing pairs. Most of the energy produced by an internal combustion engine is dissipated as frictional losses of which major portion is contributed by the piston ring-cylinder liner tribo pair. Hence, proper design of tribological parameters of piston ring-cylinder liner pair is essential and can effectively reduce the friction and wear, thereby improving the tribological performance of the engine. This paper aims to use surface texturing, an effective and feasible method, to improve the tribological performance of piston ring-cylinder liner tribo pair. Design/methodology/approach In this paper, influence of positive texturing (protruding) on friction reduction and wear resistance of piston ring surfaces was studied. The square-shaped positive textures were fabricated on piston ring surface by chemical etching method, and the experiments were conducted with textured piston ring surfaces against un-textured cylinder liner surface on pin-on-disc apparatus by continuous supply of lubricant at the inlet of contact zone. The parameters varied in this study are area density and normal load at a constant sliding speed. A comparison was made between the tribological properties of textured and un-textured piston ring surfaces. Findings From the experimental results, the tribological performance of the textured piston ring-cylinder liner tribo pair was significantly improved over a un-textured tribo pair. A maximum friction reduction of 67.6 per cent and wear resistance of 81.6 per cent were observed with textured ring surfaces as compared to un-textured ring surfaces. Originality/value This experimental study is helpful for better understanding of the potency of positive texturing on friction reduction and wear resistance of piston ring-cylinder liner tribo pair under lubricated sliding conditions.


2013 ◽  
Vol 787 ◽  
pp. 704-710 ◽  
Author(s):  
Kellaci Ahmed ◽  
Khelidj Benyoucef ◽  
Mazouzi Redha ◽  
Lounis Mourad

This investigation is concerned with the elastohydrodynamic lubrication of the piston skirt / cylinder link of an internal combustion engine. In such compliant structures, the thickness of the lubricant film depends not only on the elastic deformation elements of the mechanism but also on their profiles. We have developed a computer program to study the effect of the profile of the piston skirt on the lubricant film. This program is based on a two-dimensional description of the lubricant film flow and a three-dimensional deformation of solids. The Reynolds equation defines the behavior of hydrodynamic film of oil in the liaison piston skirt / cylinder, and the equations of static and elastic equilibrium quantify the behavior of the structure. These Equations are solved numerically by using the finite differences method.


Author(s):  
H. Bouassida ◽  
N. Biboulet ◽  
P. Sainsot ◽  
A. A. Lubrecht

Energy and environment are of major concern in internal combustion engine component design. The piston ring-cylinder liner (PRCL) contact plays an essential part in design and is highlighted in this study. In fact, the rings ensure the sealing property, reducing the environmental impact by avoiding lubricant contamination (blow-by) and lubricant consumption. Unfortunately, when sealing, the rings generate between 11 to 24% of the friction losses in an internal combustion engine [1], thus reducing the energy efficiency of the engine. The cylinder liner surface features a special micro-geometry, a classical one is the cross-hatching pattern, obtained by honing. This texturing acts as a micro-bearing, oil reservoir and debris trap. Understanding the influence of texture parameters as groove depth and width or angle, will allow tribological improvements of the PRCL contact. The 2D transient Reynolds equation has to be solved for this kind of surface. The statistical method using the Patir and Cheng [2] flow factors is widely used. This approach lumps the different components of the surface (grooves and plateaux) and does not consider the roughness directionality. Methods decoupling both components, like the homogenization method [3] are also used. Another alternative is to use a deterministic model on measured surfaces, but this is a “hugely” expensive approach. Multigrid methods [4] are used to drastically reduce the calculational cost. The aim of the current study is to facilitate the understanding of measured surface calculations. Hence, analytical surfaces are used. They allow a flexible handling of the cross-hatching parameters. The plateaux are perfectly smooth and the grooves are sinusoidally shaped. The top ring is modelled using a parabolic profile. Periodic boundary conditions are used in the orthoradial direction and zero pressure conditions (Dirichlet) in the axial direction. To investigate the effect of different parameters, various imposed film thicknesses are applied and the mean load carrying capacity (LCC) over time is calculated. When representing the LCC corresponding to each parameter compared to the smooth LCC, as a function of the logarithm of the minimum film thickness, the curves are quite linear for small values of the film thickness and then for larger values they converge to 1.


1998 ◽  
Vol 41 (4) ◽  
pp. 610-614 ◽  
Author(s):  
Hai Shan Wang ◽  
Gu Yun Chao ◽  
Xin Hui Xiang ◽  
Yue Jing Dao ◽  
Zhang Yizhong

Sign in / Sign up

Export Citation Format

Share Document