scholarly journals Planning for Regional Water System Sustainability Through Water Resources Security Assessment Under Uncertainties

2018 ◽  
Vol 32 (9) ◽  
pp. 3135-3153 ◽  
Author(s):  
Yizhong Chen ◽  
Li He ◽  
Hongwei Lu ◽  
Jing Li ◽  
Lixia Ren
Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1999
Author(s):  
Haijiao Yu ◽  
Zihan Yang ◽  
Bo Li

A sustainability assessment of water resources is essential for maintaining regional sustainable development. In this study, a comprehensive assessment of changes in the sustainability of the water resource system in Beijing from 2008 to 2018 was conducted on the basis of the driver-pressure-state-impact-response (DPSIR) model. To reflect the impacts of humans on the water consumption and pollution of water resources, the water footprint was considered. In addition, key factors that affect the sustainability of water resources were filtered by the modified entropy method. The results indicated that all drivers, pressures, states, impacts, and responses demonstrated increasing tendencies. As a result, a remarkable improvement in the sustainability of the water system, which was mitigated from an alert state to a good state, was achieved due to the comprehensive effect of the indexes. From these results, we inferred that the sustainability of regional water resources could only be achieved through a comprehensive consideration of regional social, economic, and environmental water systems and climate change. Therefore, formulating medium- and long-term urban, economic, and water development plans and adjusting medium- and short-term water utilization programs could contribute to the sustainable utilization of regional water resources.


2021 ◽  
Author(s):  
Haoyu Jin ◽  
Xiaohong Chen ◽  
Ruida Zhong

Abstract Runoff prediction has an important guiding role in the planning and management of regional water resources, flood prevention and drought resistance, and can effectively predict the risk of changes in regional water resources. This study used 12 runoff prediction methods to predict the runoff of four hydrological stations in the Hanjiang River Basin (HRB). Through the MCMC method, the HRB runoff probability conversion model from low to high (high to low) is constructed. The study found that the runoff of the HRB had a decreasing trend. In the mid-1980s, the runoff had a significant decreasing trend. The smoother the runoff changes, the easier it is to make accurate prediction. On the whole, the QS-MFM, MFM, MA-MFM, CES and DNN methods have strong generalization ability and can more accurately predict the runoff of the HRB. The Logistic model can accurately simulate the change of runoff status in the HRB. Among them, the HLT station has the fastest conversion rate of drought and flood, and the flow that generates floods is 6 times that of drought. The smaller the basin area, the larger the gap between drought and flood discharge. Overall, this research provides important technical support for the prediction of change in water resources and the transition probability from drought to flood in the HRB.


2014 ◽  
Vol 18 (1) ◽  
pp. 319-332 ◽  
Author(s):  
H. H. G. Savenije ◽  
A. Y. Hoekstra ◽  
P. van der Zaag

Abstract. This paper reviews the changing relation between human beings and water since the Industrial Revolution, a period that has been called the Anthropocene because of the unprecedented scale at which humans have altered the planet during this time. We show how the rapidly changing world urges us to continuously improve our understanding of the complex interactions between humans and the water system. The paper starts by demonstrating that hydrology and the science of managing water resources have played key roles in human and economic development throughout history; yet these roles have often been marginalised or obscured. Knowledge of hydrology and water resources engineering and management helped to transform the landscape, and thus also the very hydrology within catchments itself. It is only fairly recent that water experts have become conscious of such mechanisms, exemplified by several concepts that try to incorporate them – integrated water resources management, eco-hydrology, socio-hydrology. We have reached a stage at which a more systemic understanding of scale interdependencies can inform the sustainable governance of water systems, using new concepts like precipitation sheds, virtual water transfers, water footprints, and water value flow.


Sign in / Sign up

Export Citation Format

Share Document