scholarly journals Sustainability Assessment of Water Resources in Beijing

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1999
Author(s):  
Haijiao Yu ◽  
Zihan Yang ◽  
Bo Li

A sustainability assessment of water resources is essential for maintaining regional sustainable development. In this study, a comprehensive assessment of changes in the sustainability of the water resource system in Beijing from 2008 to 2018 was conducted on the basis of the driver-pressure-state-impact-response (DPSIR) model. To reflect the impacts of humans on the water consumption and pollution of water resources, the water footprint was considered. In addition, key factors that affect the sustainability of water resources were filtered by the modified entropy method. The results indicated that all drivers, pressures, states, impacts, and responses demonstrated increasing tendencies. As a result, a remarkable improvement in the sustainability of the water system, which was mitigated from an alert state to a good state, was achieved due to the comprehensive effect of the indexes. From these results, we inferred that the sustainability of regional water resources could only be achieved through a comprehensive consideration of regional social, economic, and environmental water systems and climate change. Therefore, formulating medium- and long-term urban, economic, and water development plans and adjusting medium- and short-term water utilization programs could contribute to the sustainable utilization of regional water resources.

2020 ◽  
Author(s):  
Dedi Liu

<p>The increasing magnitude and frequency of undesirable events, driven by climate and anthropogenic changes, have given rise to various approaches for quantifying the resilience of regional water resource systems. However, the deficiencies of these approaches in describing linkages among subsystems and disturbance-dependent resilience have hindered the assessment and prediction of resilience in water resource management. The nexus approach enables the propagation of a disturbance to be simulated (a process called surrogate disturbance generation). An approach analogous to a unit hydrograph is developed, and resilience routing (strain flow routing), which is a novel framework and model of the dynamic resilience process, is proposed for the evaluation of a regional water resource system. The proposed framework and model are applied to the Jinghong regional water resource system. Taking a pollution event as a disturbance, the responses of the water supply, fishery and electricity subsystems are simulated to test the validity of the proposed methods. The linkages among subsystems are determined according to the sink-source dynamic using the nexus approach, and the levels of surrogate disturbance transformed from the disturbance event can be quantified by the processes of dynamic resilience evaluation. The shape of the dynamic resilience process is quantified by the parameters of unit resilience routing with disturbance independence and reflects the characteristics of the system responding to the disturbance. The proposed method helps to assess the adaptive capacity of a water system to alleviate and regulate disturbances. Furthermore, after the calibration and validation of the assumptions of linearity inherent in the method, it can also be used to predict the dynamic resilience processes of every subsystem in response to any disturbance event affecting a regional water resource system.</p>


2014 ◽  
Vol 694 ◽  
pp. 532-535
Author(s):  
Lin Wu

Water footprint theory and method was used to estimate the water footprint of Changsha City in 2009-2012. Based on the estimate of the regional water footprint structure, efficiency indicators of regional water footprint, indicators of water resources sustainable utilization, the water resources utilization status and sustainability was analyzed in Changsha. The results showed that the water footprint and water self-sufficiency rate of Changsha City remained relatively stable in 2009-2012. There not the presence of external dependence of water resources. However, due to the acute annual changes in water resources, Changsha City is still in the imbalance risk of water supply and demand.


2013 ◽  
Vol 10 (6) ◽  
pp. 7619-7649 ◽  
Author(s):  
H. H. G. Savenije ◽  
A. Y. Hoekstra ◽  
P. van der Zaag

Abstract. This paper reviews the changing relation between man and water since the industrial revolution, the period that has been called the Anthropocene because of the unprecedented scale at which humans have altered the planet. We show how the rapidly changing reality urges us to continuously improve our understanding of the complex interactions between man and the water system. The paper starts with demonstrating that hydrology and the science of water resources management have played key roles in human and economic development throughout history; yet these roles have often been marginalised or obscured. Knowledge on hydrology and water resources engineering and management helped to transform the landscape, and thus also the very hydrology within catchments itself. It is only fairly recent that water experts have become self-conscious of such mechanisms, exemplified by several concepts that try to internalise them (integrated water resources management, eco-hydrology, socio-hydrology). We have reached a stage where a more systemic understanding of scale interdependencies can inform the sustainable governance of water systems, using new concepts like precipitationsheds, virtual water transfers, water footprint and water value flow.


2019 ◽  
Vol 11 (13) ◽  
pp. 3693
Author(s):  
Chen Cao ◽  
Xiaohan Lu ◽  
Xuyong Li

Excessive water consumption, associated with regional agriculture and livestock development and rapid urbanization, has caused significant stress to the ecological health and sustainable use of water resources. We used the water footprint theory to quantify the spatiotemporal characteristics and variation in the water footprint of agriculture and livestock (WF-AL) in the Beijing–Tianjin–Hebei region of China (2000–2016). We predicted the spatial distribution and sustainability of regional water resources at different levels of annual precipitation. Results showed that the average county WF-AL rose from 8.03 × 108 m3 in 2000 to 10.89 × 108 m3 in 2016. There was spatial heterogeneity compared to the average city WF-AL. The WF-AL varied between the mountains and the plains. The scale of the WF-AL was one of the main reasons for differences in the consumption and distribution of water resources. The development of regional water resources deteriorated from a stable state to an unstable state from 2000 to 2016. Only 5.8% of the areas maintained a stable state of water resources. Even in the predicted wet years, no improvements were found in the instability of water resources in four areas centered on the counties of Xinji, Daming, Luannan, and Weichang. To achieve a medium and long-term balance between WF-AL development and water resource recovery, the WF-AL should be limited and combined with reservoir and cross-regional water transfer.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 715 ◽  
Author(s):  
Ming Zhang ◽  
Jinghong Zhou ◽  
Runjuan Zhou

The sustainability of regional water resources has important supporting data needed for establishing policies on the sustainable development of the social economy. The purpose of this paper is to propose an assessment method to accurately reflect the sustainability of regional water resources in various areas. The method is based on the relative entropy of the information entropy theory. The steps are as follows. Firstly, the pretreatment of the evaluation sample data is required, before the relative entropy of each standard evaluation sample and evaluation grade (SEG) is calculated to obtain the entropy weight of each evaluation index. After this, the entropy weighted comprehensive index (WCI) of the standard evaluation grade sample is obtained. The function relation between WCI and SEG can be fitted by the cubic polynomial to construct the evaluation function. Using the above steps, a generalized entropy method (GEM) for the sustainable assessment of regional water resources is established and it is used to evaluate the sustainability of water resources in the Pingba and Huai River areas in China. The results show that the proposed GEM model can accurately reflect the sustainable water resources in the two regions. Compared with the other evaluation models, such as the Shepherd method, Artificial Neural Network and Fuzzy comprehensive evaluation, the GEM model has larger differences in its evaluation results, which are more reasonable. Thus, the proposed GEM model can provide scientific data support for coordinating the relationship between the sustainable development and utilization of regional water resources in order to improve the development of regional population, society and economy.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3224 ◽  
Author(s):  
Davy Vanham

Sustainable healthy diets are high on the research and policy agendas. One of the crucial resources to provide such diets are water resources. This paper provides a brief overview of the current research state regarding this topic, with a focus on the water footprint concept, as latter quantifies water use along a supply chain. The water footprint (WF) quantifies blue and green water consumption, as both these water resources are essential for food and energy production as well as for the environment. Different kinds of information are embedded in a dietary WF and different data sources and modelling approaches exist, leading to WF dietary amounts that are not always directly comparable. A full sustainability assessment of a dietary WF encompasses three components: (1) an equity assessment of the total WF amount; (2) an efficiency assessment for each food item in the diet as well as (3) an impact assessment (blue water stress and green water scarcity) for each food item in the diet. The paper concludes with an outlook on future research on the topic, listing the following points: (1) future clarity in system boundary and modelling assumptions, with comparison of results between different approaches; (2) full sustainability assessments including all three components; (3) dietary footprint family assessments with the WF as one member; (4) WF assessments for multiple dietary regimes with support to the development of local dietary guidelines and (5) assessment of the synergies with LCA-based mid-point (scarcity-weighted WF) and end-point (especially human health) indicators and evaluation of the validity and empirical significance of these two indicators


2016 ◽  
Vol 532 ◽  
pp. 140-148 ◽  
Author(s):  
Shikun Sun ◽  
Yubao Wang ◽  
Jing Liu ◽  
Huanjie Cai ◽  
Pute Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document