Runoff Forecast and Analysis of the Probability of Dry and Wet Transition in the Hanjiang River Basin

Author(s):  
Haoyu Jin ◽  
Xiaohong Chen ◽  
Ruida Zhong

Abstract Runoff prediction has an important guiding role in the planning and management of regional water resources, flood prevention and drought resistance, and can effectively predict the risk of changes in regional water resources. This study used 12 runoff prediction methods to predict the runoff of four hydrological stations in the Hanjiang River Basin (HRB). Through the MCMC method, the HRB runoff probability conversion model from low to high (high to low) is constructed. The study found that the runoff of the HRB had a decreasing trend. In the mid-1980s, the runoff had a significant decreasing trend. The smoother the runoff changes, the easier it is to make accurate prediction. On the whole, the QS-MFM, MFM, MA-MFM, CES and DNN methods have strong generalization ability and can more accurately predict the runoff of the HRB. The Logistic model can accurately simulate the change of runoff status in the HRB. Among them, the HLT station has the fastest conversion rate of drought and flood, and the flow that generates floods is 6 times that of drought. The smaller the basin area, the larger the gap between drought and flood discharge. Overall, this research provides important technical support for the prediction of change in water resources and the transition probability from drought to flood in the HRB.

2012 ◽  
Vol 1 (8) ◽  
Author(s):  
Mesud Adžemović ◽  
Mirjana Bartula ◽  
Jordan Aleksić

Economic analysis is the key requirement of EU Water Framework Directive. On a level of river basin area, economic analysis includes three dimensions: 1. economic characterization of water use: current and future projected economic importance of capacities and potentials of water resources; 2. program of measures for achieving good water status: cost-benefit analyses, cost efficiency analyses, cost scale and influence: and 3. water services price policies: evaluation of institutional alternatives for recovery of water services costs, including analysis of cost distribution. The analysis includes leveling of current and projected water resources data with costs and benefits of water services on the level of river basin area within local communities and integrated on sub-region level.


2020 ◽  
Vol 20 (8) ◽  
pp. 3557-3575
Author(s):  
Pengxin Deng ◽  
Gaohong Xu ◽  
Jianping Bing ◽  
Changjiang Xu ◽  
Jianwei Jia

Abstract Rain–flood utilization refers to transforming some amount of rain or floodwater into ordinary water resources without decreasing flood control standards or damaging the ecological environment of rivers, which has gained widespread attention as it can alleviate water shortages and gain benefits. This paper put forward the evaluation method of rain–flood utilization availability at the distributed watershed scale. Based on the water node, some indices of rain–flood utilization availability were defined. Then the evaluation method and calculation process were unified. Finally, the status and potential of the rain–flood utilization of Hanjiang River Basin were analyzed. The results indicated that the rain–flood resource in the whole basin is 48.9 billion m3, the outflow is 29.9 billion m3, and the actual utilization is about 19.0 billion m3. The current available rain–flood amount and rain–flood utilization potential are 27.7 billion m3 and 11.0 billion m3, and the rain–flood utilization rate is 49.4%. Limited by regulation ability and the rain–flood resources, current rain–flood utilization has a clear threshold range. The potential utilization objects are mainly for a rainfall process of about two to ten years return period. The application in Hanjiang River Basin offers some practical information for assessing rain–flood utilization scientifically, and the premise for effectively guiding and formulating adaptive countermeasures for water resources management.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2787
Author(s):  
Xin Jin ◽  
Yanxiang Jin ◽  
Xufeng Mao ◽  
Jingya Zhai ◽  
Di Fu

Vegetation change in arid areas may lead to the redistribution of regional water resources, which can intensify the competition between ecosystems and humans for water resources. This study aimed to accurately model the impact of vegetation change on hydrological processes in an arid endorheic river watershed undergoing revegetation, namely, the middle and lower reaches of the Bayin River basin, China. A LU-SWAT-MODFLOW model was developed by integrating dynamic hydrological response units with a coupled SWAT-MODFLOW model, which can reflect actual land cover changes in the basin. The LU-SWAT-MODFLOW model outperformed the original SWAT-MODFLOW model in simulating the impact of human activity as well as the leaf area index, evapotranspiration, and groundwater table depth. After regional revegetation, evapotranspiration and groundwater recharge in different sub-basins increased significantly. In addition, the direction and amount of surface-water–groundwater exchange changed considerably in areas where revegetation involved converting low-coverage grassland and bare land to forestland.


Sign in / Sign up

Export Citation Format

Share Document