Bioaugmentation and Biostimulation of Total Petroleum Hydrocarbon Degradation in a Petroleum-contaminated Soil with Fungi Isolated from Olive Oil Effluent

2019 ◽  
Vol 230 (3) ◽  
Author(s):  
Abduelbaset M. A. Essabri ◽  
Nur Pasaoglulari Aydinlik ◽  
Ndifreke Etuk Williams
2021 ◽  
Author(s):  
Samuel Beal ◽  
Ashley Mossell ◽  
Jay Clausen

The study objectives were to determine the effectiveness of Fenton’s Reagent and Modified Fenton’s Reagent in reducing Total Petroleum Hydrocarbon (TPH) concentrations in petroleum-contaminated soil from McMurdo Station, Antarctica. Comparisons of the contaminated soils were made, and a treatability study was completed and documented. This material was presented at the Association for Environmental Health and Sciences Foundation (AEHS) 30th Annual International Conference on Soil, Water, Energy, and Air (Virtual) on March 25, 2021.


2015 ◽  
Vol 34 (4) ◽  
pp. 268-273 ◽  
Author(s):  
Sung Un Kim ◽  
Yong Gyun Kim ◽  
Sang Mong Lee ◽  
Hyean Cheal Park ◽  
Keun Ki Kim ◽  
...  

2020 ◽  
Vol 54 (18) ◽  
pp. 11396-11404
Author(s):  
Barbara A. Bekins ◽  
Jennifer C. Brennan ◽  
Donald E. Tillitt ◽  
Isabelle M. Cozzarelli ◽  
Jennifer McGuire Illig ◽  
...  

2011 ◽  
Vol 233-235 ◽  
pp. 693-696
Author(s):  
Li Chen ◽  
Fa Wang Zhang ◽  
Shuo Ren ◽  
Sheng Zhang

According to the previous experience on remediation experiment in laboratory and field, the study on microgial ecological remediation of petroleum contaminated soil in Puyang oilfield was carried out under 3 different conditions. Here the results from remediation show that the technology of microbe cooperated with alfalfa, single microbe technology and single alfalfa technology all possess remedial effect on petroleum contaminated soil through 99-day period remediation, and the technology of microbe cooperated with alfalfa creates the best remedial mission with petroleum hydrocarbon degradation rate of 65.27%, while the rest single technologies exerts degradation rate of about 40% on petroleum hydrocarbon, Moreover, the experiment results indicate that few nutriment such as soluble salt, NO3-, Cl-,etc can infiltrate into the lower soil layer(50cm). However, the distinct increase of NH4+ in the second and third remediation area may attribute to abundance fertilizer transportation into depth soil layer due to the nitrogen fixation of alfalfa’s roots. In addition, we also find that the remediation effect can be impacted by the factors containing tempertation, water, oxygen, nutriment and mini-geo-enviroment.


2020 ◽  
Vol 26 (5) ◽  
pp. 200384-0
Author(s):  
Jianbo Liu ◽  
Liming Xu ◽  
Feifei Zhu ◽  
Shouhao Jia

It has been proven that surfactants used in the remediation of petroleum hydrocarbon contaminated soil have great application potential. In this study, the effects of five surfactants (SDBS, Tween80, Tween60, rhamnolipid and TRS-1) on leaching of petroleum hydrocarbons from soil were investigated through orthogonal experiments, and petroleum hydrocarbon components were analyzed by GC/MS. The effects of surfactants on the degradation of petroleum hydrocarbon were analyzed by the changes of microbial growth curve and surface hydrophobicity. The results showed that surfactant type, temperature and surfactant concentration had significant effects on the removal rate of petroleum hydrocarbon. Tween80, rhamnolipid and TRS-1 have good bio-friendliness and a high removal rate of petroleum hydrocarbons (up to 65%), suitable for the restoration of the soil used in the experiment And Surfactants exhibited a higher removal rate for small molecules and petroleum hydrocarbons with odd carbon atoms. Surfactants have a certain modification effect on the surface of relatively hydrophilic bacteria under the initial conditions, making their surface properties develop in the direction of enhanced hydrophobicity, and the hydrophobicity has increased from less than 20% to about 40%.


Sign in / Sign up

Export Citation Format

Share Document