Solar Photocatalysis for Degradation of Pharmaceuticals in Hospital Wastewater: Influence of the Type of Catalyst, Aqueous Matrix, and Toxicity Evaluation

2021 ◽  
Vol 233 (1) ◽  
Author(s):  
Diego Alejandro Pino-Sandoval ◽  
Laura Hinojosa-Reyes ◽  
Jorge Luis Guzmán-Mar ◽  
Juan Camilo Murillo-Sierra ◽  
Aracely Hernández-Ramírez
Author(s):  
Veena Vijayan ◽  
Suguna Yesodharan ◽  
E. P. Yesodharan

Solar photocatalysis as a potential green technology for the removal of traces of the dye pollutant Indigo carmine (IC) from water is investigated using ZnO as the catalyst. Degradation/decolorization alone does not result in complete decontamination as seen from the significant Chemical Oxygen Demand (COD) of water even after the parent compound has disappeared completely. The degradation proceeds through many intermediates which also get mineralized eventually but slowly. Oxalic acid is identified as a stable slow mineralizing degradation product which itself is formed from other transient intermediates. Effect of various parameters such as catalyst dosage, concentration of the dye, pH, temperature, presence of contaminant salts etc. on the degradation is investigated and quantified. Oxidants such as S2O82- and H2O2 have only moderate influence on the degradation. The degradation follows variable kinetics depending on the concentration of the substrate. The reaction proceeds very slowly in the absence of O2 indicating the importance of reactive oxygen species and hydroxyl free radicals in photocatalysis. H2O2 formed insitu in the system undergoes concurrent decomposition resulting in stabilization in its concentration. The study demonstrates that solar photocatalysis can be used as a viable tool for the purification of water contaminated with traces of IC.


2012 ◽  
Author(s):  
Saber Hussain ◽  
Christin Grabinski ◽  
Nicole Schaeublin ◽  
Elizabeth Maurer ◽  
Mohan Sankaran ◽  
...  

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2357-2360
Author(s):  
J. Zagorc-Koncan ◽  
M. Dular

A laboratory river model for the study of self-purification inhibition in a stream containing toxic substances is presented. It enables an engineering - technological prediction of the impact of toxic substances or wastewaters on dissolved oxygen (DO) profile in an organically polluted river downstream from the point of entry of toxic effluent thus providing rapidly and inexpensively significant design information to an environmental scientist or engineer. The method was applied to the toxicity evaluation of wastewaters from electroplating industry. The effects of copper, cyanide (representing two significant constituents of this type of wastewaters) and wastewater from electroplating industry on the biodegradation of organic municipal pollution in receiving stream were evaluated experimentally.


2020 ◽  
Vol 98 ◽  
pp. 55-61 ◽  
Author(s):  
Qiuyi Ji ◽  
Huan He ◽  
Zhanqi Gao ◽  
Xiaohan Wang ◽  
Shaogui Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document