Characterization of the cellulolytic bacteria communities along the gastrointestinal tract of Chinese Mongolian sheep by using PCR-DGGE and real-time PCR analysis

2015 ◽  
Vol 31 (7) ◽  
pp. 1103-1113 ◽  
Author(s):  
Yan Zeng ◽  
Dong Zeng ◽  
Yan Zhang ◽  
Xueqin Ni ◽  
Yurui Tang ◽  
...  
2013 ◽  
Vol 295-298 ◽  
pp. 224-231 ◽  
Author(s):  
Ai Wu Gao ◽  
Hai Rong Wang ◽  
Jin Li Yang ◽  
Cai Xia Shi

The role of microbes in fiber degradation and the relations among the microbes in sheep rumen were explored by in vivo elimination of fungi. The experiment was conducted on 6 Mongolian sheep with fistulae approximately 1.5 years old (35kg). The sheep were randomly divided into two groups, treatment group (n=3) and control group (n=3). The rumen fluids were collected from the rumen though fistulae. The results showed that the total numbers of bacteria, cellulolytic bacteria and protozoa in the rumen were significantly increased (P<0.05) after fungus elimination. Among the three main cellulolytic bacteria, the number of R.flavefaciens and F.succinogenes increased significant (P<0.05). Elimination of fungi significantly reduced the degradation of DM, NDF and ADF, and the activity of CMCase in sheep rumen (P<0.05). The number of total rumen bacteria and fungi detected by real-time PCR were about 10 times and 1,000 times higher than that of the traditional anaerobic culture method, suggesting that real-time PCR is superior to the traditional roller tube culture method.


2011 ◽  
Vol 39 (5) ◽  
pp. 5905-5912 ◽  
Author(s):  
Gang Zhang ◽  
Mingming Zhao ◽  
Chao Song ◽  
Anxiong Luo ◽  
Jianfa Bai ◽  
...  

2009 ◽  
Vol 37 (1) ◽  
pp. 507-513 ◽  
Author(s):  
Yanfang Yang ◽  
Shuang Hou ◽  
Guanghong Cui ◽  
Shilin Chen ◽  
Jianhe Wei ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Salem Belkessa ◽  
Daniel Thomas-Lopez ◽  
Karim Houali ◽  
Farida Ghalmi ◽  
Christen Rune Stensvold

The molecular epidemiology of giardiasis in Africa remains unclear. A study was carried out across four hospitals in Algeria. A total of 119 fecal samples from 55 children, 37 adults, and 27 individuals of undetermined age, all scored positive for intestinal parasites by microscopy, and were screened by real-time PCR for Giardia. Molecular characterization of Giardia was performed by assemblage-specific PCR and PCR targeting the triose phosphate isomerase gene (tpi). Of the 119 samples, 80 (67%) were Giardia-positive by real-time PCR. For 48 moderately-highly real-time PCR-positive samples, tpi genotyping assigned 22 samples to Assemblage A and 26 to Assemblage B. Contrary to Assemblage A, Assemblage B exhibited substantial genetic diversity and allelic heterozygosity. Assemblage-specific PCR proved to be specific for discriminating Assemblage A or B but not as sensitive as tpi genotyping. We confirmed that real-time PCR is more sensitive than microscopy for detecting Giardia in stool samples and that robust amplification and sequencing of the tpi gene is feasible when moderate-to-strongly real-time PCR-positive samples are used. This study is one of the few performed in Africa providing genotyping data on Giardia infections in humans. Both assemblages A and B were commonly seen and not associated with specific sociodemographic data.


2006 ◽  
Vol 4 (s1) ◽  
pp. 82-82
Author(s):  
K. Floros ◽  
H. Thomadaki ◽  
S. Pavlovic ◽  
M. Talieri ◽  
M. Colovic ◽  
...  

2005 ◽  
Vol 71 (7) ◽  
pp. 3911-3916 ◽  
Author(s):  
Mark G. Wise ◽  
Gregory R. Siragusa

ABSTRACT Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Berta Fidalgo ◽  
Elisa Rubio ◽  
Victor Pastor ◽  
Marta Parera ◽  
Clara Ballesté-Delpierre ◽  
...  

Introduction. The identification of enteropathogens is critical for the clinical management of patients with suspected gastrointestinal infection. The FLOW multiplex PCR system (FMPS) is a semi-automated platform (FLOW System, Roche) for multiplex real-time PCR analysis. Hypothesis/Gap Statement. FMPS has greater sensitivity for the detection of enteric pathogens than standard methods such as culture, biochemical identification, immunochromatography or microscopic examination. Aim.The diagnostic performance of the FMPS was evaluated and compared to that of traditional microbiological procedures. Methodology. A total of 10 659 samples were collected and analysed over a period of 7 years. From 2013 to 2018 (every July to September), samples were processed using standard microbiological culture methods. In 2019, the FMPS was implemented using real-time PCR to detect the following enteropathogens: Shigella spp., Salmonella spp., Campylobacter spp., Giardia intestinalis, Entamoeba histolytica, Blastocystis hominis, Cryptosporidum spp., Dientamoeba fragilis, adenovirus, norovirus and rotavirus. Standard microbiological culture methods (2013–2018) included stool culture, microscopy and immunochromatography. Results. A total of 1078 stool samples were analysed prospectively using the FMPS from July to September (2019): bacterial, parasitic and viral pathogens were identified in 15.3, 9.71 and 5.29 % of cases, respectively. During the same period of 6 years (2013–2018), the proportion of positive identifications using standard microbiological methods from 2013 to 2018 was significantly lower. A major significant recovery improvement was observed for all bacteria species tested: Shigella spp./enteroinvasive Escherichia coli (EIEC) (P <0.05), Salmonella spp. (P <0.05) and Campylobacter spp. (P <0.05). Marked differences were also observed for the parasites G. intestinalis, Cryptosporidium spp. and D. fragilis. Conclusion. These results support the value of multiplex real-time PCR analysis for the detection of enteric pathogens in laboratory diagnosis with outstanding performance in identifying labile micro-organisms. The identification of unsuspected micro-organisms for less specific clinical presentations may also impact on clinical practice and help optimize patient management.


Sign in / Sign up

Export Citation Format

Share Document