Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: biology, current control strategies, and perspectives

Author(s):  
Irán Tapia-Vázquez ◽  
Amelia C. Montoya-Martínez ◽  
Sergio De los Santos-Villalobos ◽  
María J. Ek-Ramos ◽  
Roberto Montesinos-Matías ◽  
...  
Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 146
Author(s):  
Jordan Hoffman ◽  
Ilinca Ciubotariu ◽  
Limonty Simubali ◽  
Twig Mudenda ◽  
William Moss ◽  
...  

Despite dramatic reductions in malaria cases in the catchment area of Macha Hospital, Choma District, Southern Province in Zambia, prevalence has remained near 1–2% by RDT for the past several years. To investigate residual malaria transmission in the area, this study focuses on the relative abundance, foraging behavior, and phylogenetic relationships of Anopheles squamosus specimens. In 2011, higher than expected rates of anthropophily were observed among “zoophilic” An. squamosus, a species that had sporadically been found to contain Plasmodium falciparum sporozoites. The importance of An. squamosus in the region was reaffirmed in 2016 when P. falciparum sporozoites were detected in numerous An. squamosus specimens. This study analyzed Centers for Disease Control (CDC) light trap collections of adult mosquitoes from two collection schemes: one performed as part of a reactive-test-and-treat program and the second performed along a geographical transect. Morphological identification, molecular verification of anopheline species, and blood meal source were determined on individual samples. Data from these collections supported earlier studies demonstrating An. squamosus to be primarily exophagic and zoophilic, allowing them to evade current control measures. The phylogenetic relationships generated from the specimens in this study illustrate the existence of well supported clade structure among An. squamosus specimens, which further emphasizes the importance of molecular identification of vectors. The primarily exophagic behavior of An. squamosus in these collections also highlights that indoor vector control strategies will not be sufficient for elimination of malaria in southern Zambia.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 947
Author(s):  
Rishi Kondapaneni ◽  
Ashley N. Malcolm ◽  
Brian M. Vazquez ◽  
Eric Zeng ◽  
Tse-Yu Chen ◽  
...  

Florida lies within a subtropical region where the climate allows diverse mosquito species including invasive species to thrive year-round. As of 2021, there are currently 66 state-approved Florida Mosquito Control Districts, which are major stakeholders for Florida public universities engaged in mosquito research. Florida is one of the few states with extensive organized mosquito control programs. The Florida State Government and Florida Mosquito Control Districts have long histories of collaboration with research institutions. During fall 2020, we carried out a survey to collect baseline data on the current control priorities from Florida Mosquito Control Districts relating to (1) priority control species, (2) common adult and larval control methods, and (3) major research questions to address that will improve their control and surveillance programs. The survey data showed that a total of 17 distinct mosquito species were considered to be priority control targets, with many of these species being understudied. The most common control approaches included truck-mounted ultra-low-volume adulticiding and biopesticide-based larviciding. The districts held interest in diverse research questions, with many prioritizing studies on basic science questions to help develop evidence-based control strategies. Our data highlight the fact that mosquito control approaches and priorities differ greatly between districts and provide an important point of comparison for other regions investing in mosquito control, particularly those with similar ecological settings, and great diversity of potential mosquito vectors, such as in Florida. Our findings highlight a need for greater alignment of research priorities between mosquito control and mosquito research. In particular, we note a need to prioritize filling knowledge gaps relating to understudied mosquito species that have been implicated in arbovirus transmission.


Nematology ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Israel L. Medina ◽  
Cesar B. Gomes ◽  
Valdir R. Correa ◽  
Vanessa S. Mattos ◽  
Philippe Castagnone-Sereno ◽  
...  

Root-knot nematodes (Meloidogyne spp.) significantly impact potato production worldwide and in Brazil they are considered one of the most important group of nematodes affecting potatoes. The objectives of this study were to survey Meloidogyne spp. associated with potatoes in Brazil, determine their genetic diversity and assess the aggressiveness of M. javanica on two susceptible potato cultivars. Fifty-seven root-knot nematode populations were identified using esterase phenotyping, including Meloidogyne javanica, M. incognita, M. arenaria and M. ethiopica. Overall, root-knot nematodes were present in ca 43% of sampled sites, in which M. javanica was the most prevalent species, and the phenotypes Est J3, J2a and J2 occurred in 91.2, 6.7 and 2.1% of the positive samples, respectively. Other species, such as M. incognita, M. arenaria and M. ethiopica, were found less frequently and occurred at rates of 6.4, 4.3 and 2.1% of the samples, respectively. Sometimes, M. javanica was found in mixtures with other root-knot nematodes in ca 10.6% of sites containing Meloidogyne. After confirming the identification of 17 isolates of M. javanica and one isolate each of M. incognita, M. arenaria and M. ethiopica by SCAR markers, the populations were used to infer their genetic diversity using RAPD markers. Results revealed low intraspecifc genetic diversity among isolates (13.9%) for M. javanica. Similarly, M. javanica sub-populations (J2a) clustered together (81% of bootstrap), indicating subtle variation from typical J3 populations. The aggressiveness of four populations of M. javanica from different Brazilian states on two susceptible potato cultivars was tested under glasshouse conditions. Results indicated differences in aggressiveness among these populations and showed that potato disease was proportional to nematode reproduction factor.


Nematology ◽  
2000 ◽  
Vol 2 (8) ◽  
pp. 907-916 ◽  
Author(s):  
Ngo Thi Xuyen ◽  
Raf Verlinden ◽  
Ruth Stoffelen ◽  
Dirk De Waele ◽  
Rony Swennen

AbstractTwenty-five banana varieties of section Eumusa (AA-group) and seven of the section Australimusa (Fe'i-group) from Papua New Guinea were evaluated for resistance to Radopholus similis, Pratylenchus coffeae and Meloidogyne spp. The host plant responses were compared with the susceptible reference cvs Grande Naine and Cavendish 901. In vitro propagated plants were transferred to the glasshouse in loamy sand and inoculated with approximately 1000 migratory endoparasitic nematodes at 4 weeks after planting. Reproduction of R. similis and P.coffeae in the roots was determined at 8 or 10 weeks, respectively, after inoculation. Reproduction of Meloidogyne spp. was determined 8 weeks after inoculation with 3300 to 5000 eggs. No resistance to R. similis was found in the diploid varieties. The Fe'i variety Rimina and possibly Menei were resistant to R. similis. All varieties tested were susceptible to P.coffeae and Meloidogyne spp. Tests de résistance de bananiers Eumusa et Australimusa (Musa spp.) envers les nématodes endoparasites migrateurs et galligènes - Vingt-cinq variétés de bananier de la section Eumusa (groupe AA) et sept de la section Australimusa (group Fe'i) provenant de Papouasie-Nouvelle Guinée ont été testées pour leur résistance envers Radopholus similis, Pratylenchus coffeae et Meloidogyne spp. Les résponses de ces variétés ont été comparées à celles des cultivars sensibles de référence Grande Naine et Cavendish 901. Des vitroplants ont été mis en place en serre sur un sol argilo-sableux et inoculés 4 semaines après plantation avec environ 1000 R. similis ou P.coffeae dont la reproduction a été déterminée 8 et 10 semaines, respectivement, après inoculation. La reproduction de Meloidogyne spp. l'a été 8 semaines après inoculation avec 3300 à 5000 oeufs. Aucune résistance à R. similis n'a été observée chez les variétés diploïdes. Les variétés du groupe Fe'i Rimina et Menei se sont montrées résistantes à R. similis, avec un certain doute dans le cas de la dernière. Toutes les variétés testées sont sensibles à P.coffeae et Meloidogyne spp.


2017 ◽  
Vol 63 ◽  
pp. 96-104 ◽  
Author(s):  
José Thalles Jocelino Gomes de Lacerda ◽  
Rodrigo Rodrigues e Lacerda ◽  
Nilson Antonio Assunção ◽  
Alexandre Keiji Tashima ◽  
Maria Aparecida Juliano ◽  
...  

2022 ◽  
Author(s):  
Clément Gilbert ◽  
Florian Maumus

The extent to which horizontal gene transfer (HGT) has shaped eukaryote evolution remains an open question. Two recent studies reported four plant-like genes acquired through two HGT events by the whitefly Bemisia tabaci, a major agricultural pest (Lapadula et al. 2020; Xia et al. 2021). Here, we performed a systematic search for plant-to-insect HGT in B. tabaci and uncovered a total of 50 plant-like genes deriving from at least 24 independent HGT events. Most of these genes are present in three cryptic B. tabaci species, show high level of amino-acid identity to plant genes (mean = 64%), are phylogenetically nested within plant sequences, and are expressed and evolve under purifying selection. The predicted functions of these genes suggest that most of them are involved in plant-insect interactions. Thus, substantial plant-to-insect HGT may have facilitated the evolution of B. tabaci towards adaptation to a large host spectrum. Our study shows that eukaryote-to-eukaryote HGT may be relatively common in some lineages and it provides new candidate genes that may be targeted to improve current control strategies against whiteflies.


1969 ◽  
Vol 45 (2) ◽  
pp. 55-84
Author(s):  
Jessé Román

An experiment was conducted to determine the nature of the pathogenic effects of five isolates of root-knot nematodes on the roots of the promising commercial sugarcane variety, Puerto Rico 980, the suitability of this sugarcane as a host for the five nematodes, and the possibility of the existence of strains in the species M. incognita acrita.


Sign in / Sign up

Export Citation Format

Share Document