The impact of selective logging and clearcutting on forest structure, tree diversity and above-ground biomass of African tropical forests

2014 ◽  
Vol 30 (1) ◽  
pp. 119-132 ◽  
Author(s):  
Roberto Cazzolla Gatti ◽  
Simona Castaldi ◽  
Jeremy A. Lindsell ◽  
David A. Coomes ◽  
Marco Marchetti ◽  
...  
2021 ◽  
Vol 21 ◽  
pp. 100462
Author(s):  
Sadhana Yadav ◽  
Hitendra Padalia ◽  
Sanjiv K. Sinha ◽  
Ritika Srinet ◽  
Prakash Chauhan

2018 ◽  
Vol 29 (5) ◽  
pp. 1519-1536 ◽  
Author(s):  
Paulo S. Morandi ◽  
Beatriz Schwantes Marimon ◽  
Ben Hur Marimon-Junior ◽  
James A. Ratter ◽  
Ted R. Feldpausch ◽  
...  

2016 ◽  
Vol 8 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Sudam Charan SAHU ◽  
H.S. SURESH ◽  
N.H. RAVINDRANATH

The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB) of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters) were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI) of 40.72, while Combretaceae had the highest family importance value (FIV) of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%), Madhuca indica (7.9%), Mangifera indica (6.9%), Terminalia alata (6.9%) and Diospyros melanoxylon (4.4%), warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks) scheme.


2018 ◽  
Vol 107 (3) ◽  
pp. 1419-1432 ◽  
Author(s):  
Manichanh Satdichanh ◽  
Huaixia Ma ◽  
Kai Yan ◽  
Gbadamassi G.O. Dossa ◽  
Leigh Winowiecki ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 240 ◽  
Author(s):  
Francesco Banda ◽  
Mauro Mariotti d’Alessandro ◽  
Stefano Tebaldini

In this work, the role of volume scattering obtained from ground and volume decomposition of P-band synthetic aperture radar (SAR) data as a proxy for biomass is investigated. The analysis here presented originates from the BIOMASS L2 activities, part of which were focused on strengthening the physical foundations of the SAR-based retrieval of forest above-ground biomass (AGB). A critical analysis of the observed strong correlation between tomographic intensity and AGB is done in order to propose simplified AGB proxies to be used during the interferometric phase of BIOMASS. In particular, the aim is to discuss whether, and to what extent, volume scattering obtained from ground/volume decomposition can provide a reasonable alternative to tomography. To do this, both are tested on P-band data collected at Paracou during the TropiSAR campaign and cross-validated against in-situ AGB measurements. Results indicate that volume backscattered power as obtained by ground/volume decomposition is weakly correlated to AGB, notwithstanding different solutions for volume scattering are tested, and support the conclusion that forest structure actually plays a non-negligible role in AGB retrieval in dense tropical forests.


2021 ◽  
Author(s):  
Yimin Yan ◽  
Ayub M.O. Oduor ◽  
Feng Li ◽  
Yonghong Xie ◽  
Yanjie Liu

Human-mediated introduction of plant and animal species into biogeographic ranges where they did not occur before has been so pervasive globally that many ecosystems are now co-invaded by multiple alien plant and animal species. Although empirical evidence of invaders modifying recipient ecosystems to the benefit of other aliens is accumulating, these interactions remain underexplored and underrepresented in heuristic models of invasion success. Many freshwater ecosystems are co-invaded by aquatic macrophytes and mollusks and at the same time experience nutrient enrichment from various sources. However, studies are lacking that test how nutrient enrichment and co-invasion by alien herbivores and plant species can interactively affect native plant communities in aquatic habitats. To test such effects, we performed a freshwater mesocosm experiment in which we grew a synthetic native macrophyte community of three species under two levels of nutrient enrichment (enrichment vs. no-enrichment) treatment and fully crossed with two levels of competition from an invasive macrophyte Myriophyllum aquaticum (competition vs. no-competition), and two levels of herbivory by an invasive snail Pomacea canaliculata (herbivory vs. no-herbivory) treatments. Results show that herbivory by the invasive snail enhanced above-ground biomass yield of the invasive macrophyte. Moreover, the invasive herbivore preferentially fed on biomass of the native macrophytes over that of the invasive macrophyte. However, nutrient enrichment reduced above-ground biomass yield of the invasive macrophyte. Our results suggest that eutrophication of aquatic habitats that are already invaded by M. aquaticum may slow down invasive spread of the invasive macrophyte. However, herbivory by the invasive snail P. canaliculata may enhance invasive spread of M. aquaticum in the same habitats. Broadly, our study underscores the significance of considering several factors and their interaction when assessing the impact of invasive species, especially considering that many habitats experience co-invasion by plants and herbivores and simultaneously undergo varous other disturbances including nutrient enrichment.


2020 ◽  
Vol 13 (1) ◽  
pp. 165-174
Author(s):  
R Puc-Kauil ◽  
G Ángeles-Pérez ◽  
JR Valdéz-Lazalde ◽  
VJ Reyes-Hernández ◽  
JM Dupuy-Rada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document