Damage of Composite Materials Subjected to Projectile Penetration Using High Resolution X-Ray Micro Computed Tomography

2015 ◽  
Vol 56 (4) ◽  
pp. 607-616 ◽  
Author(s):  
D. Penumadu ◽  
F. Kim ◽  
J. Bunn
2018 ◽  
Vol 2 ◽  
pp. e25794
Author(s):  
Douglas Russell ◽  
Arianna Bernucci ◽  
Amy Scott-Murray ◽  
Duncan Jackson ◽  
Farah Ahmed ◽  
...  

High resolution X-ray micro-computed tomography gives the ability to research objects in unprecedented detail in 3D without damaging them but applying these new techniques to specimens can be complex. In 2017 the Natural History Museum (NHM), London embarked on a ground-breaking project with University of Sheffield to compare extinct Great Auk Pinguinus impennis eggshell microstructure to that of their extant relatives to gain new insight into their breeding ecology. NHM has a ZEISS Xradia 520 Versa X-ray microscope capable of submicron X-ray imaging in 3D but using it required supporting and moving complete eggshells within the confined, potentially harsh, mechanised environment of the microscope without risk. Ensuring the correct position and orientation of each egg to image nine distinct areas on the eggshell was also a challenge. Collaboration with colleagues in the NHM Conservation and Imaging & Analysis Centres developed a bespoke solution to hold and protect the eggs during scanning. All six NHM Great Auk eggshells and the inside of the microscope were surface scanned using a handheld structured light scanner. Scan data produced 3D models from which accurate 3D printed plastic replicas were made of the three Great Auk eggs prioritised for research. Each replica was used to mould a two-part, custom-built, case for each egg constructed from conservation grade epoxy putty and lined with polyethylene foam. This provided close-fitting, durable cases which could be used for the 6-month duration of the project. Each case enclosed its matching Great Auk egg entirely and had the advantage of being rock-hard, electrically insulating and water, heat and chemical resistant. A system of three, interchangeable, tailor-made mounting brackets were designed that married with the cases and held them safely and precisely inside the microscope at the correct angles and positions for imaging. The structured light scan of the inside of the microscope was used to model the necessary rotational movements of the cases and brackets inside the scanner, ensuring that all movements had sufficient clearance to avoid risk of impact. This system successfully protected the fragile c. 200 year old eggs throughout 70 scanning sessions. This provides a methodology for high resolution X-ray micro-computed tomography imaging of any similarly sized, fragile, object.


Author(s):  
Daniel H. Morse ◽  
Arlyn J. Antolak ◽  
Bernice E. Mills

X-ray radiography has long been recognized as a valuable tool for detecting internal features and flaws. Recent developments in microfabrication and composite materials have extended inspection requirements to the resolution limits of conventional radiography. Our work has been directed toward pushing both detection and measurement capabilities to a smaller scale. Until recently, we have used conventional contact radiography, optimized to resolve small features. With the recent purchase of a nano-focus (sub-micron) x-ray source, we are now investigating projection radiography, phase contrast imaging and micro-computed tomography (μ-CT). Projection radiography produces a magnified image that is limited in spatial resolution mainly by the source size, not by film grain size or detector pixel size. Under certain conditions phase contrast can increase the ability to resolve small features such as cracks, especially in materials with low absorption contrast. Micro-computed tomography can provide three-dimensional measurements on a micron scale and has been shown to provide better sensitivity than simple radiographs. We have included applications of these techniques to small-scale measurements not easily made by mechanical or optical means. Examples include void detection in meso-scale nickel MEMS parts, measurement of edge profiles in thick gold lithography masks, and characterization of the distribution of phases in composite materials. Our work, so far, has been limited to film.


2019 ◽  
Vol 9 (2) ◽  
Author(s):  
Chih‐Wei Hsu ◽  
Sowmya Kalaga ◽  
Uchechukwu Akoma ◽  
Tara L. Rasmussen ◽  
Audrey E. Christiansen ◽  
...  

2012 ◽  
Vol 18 (S2) ◽  
pp. 576-577 ◽  
Author(s):  
R. Rudolph ◽  
A. Williams ◽  
O. Brunke

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


Sign in / Sign up

Export Citation Format

Share Document