Oxidative stress and cell cycle arrest induced by short-term exposure to dustfall PM2.5 in A549 cells

2017 ◽  
Vol 25 (23) ◽  
pp. 22408-22419 ◽  
Author(s):  
Jie Yang ◽  
Tingting Huo ◽  
Xu Zhang ◽  
Jie Ma ◽  
Yulin Wang ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (22) ◽  
pp. 13149-13158 ◽  
Author(s):  
Wenrui Liu ◽  
Feng Jin ◽  
Dan Gao ◽  
Lu Song ◽  
Chao Ding ◽  
...  

An UPLC/Q-TOF MS based metabolomics approach was established to study the probable antitumor mechanism of aminoquinazolin derivative 9d, which could induce oxidative stress and cell cycle arrest in A549 lung cancer cells.


Tumor Biology ◽  
2017 ◽  
Vol 39 (10) ◽  
pp. 101042831772618 ◽  
Author(s):  
Khuloud Bajbouj ◽  
Jasmin Shafarin ◽  
Maher Y Abdalla ◽  
Iman M Ahmad ◽  
Mawieh Hamad

2014 ◽  
Vol 37 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Daotong Li ◽  
Yaqiong Ye ◽  
Shaoqing Lin ◽  
Li Deng ◽  
Xiaolong Fan ◽  
...  

2018 ◽  
Vol 25 (5) ◽  
pp. 585-594.e7 ◽  
Author(s):  
Kenichi Shimada ◽  
Eduard Reznik ◽  
Michael E. Stokes ◽  
Lakshmi Krishnamoorthy ◽  
Pieter H. Bos ◽  
...  

Life Sciences ◽  
2020 ◽  
Vol 243 ◽  
pp. 117271 ◽  
Author(s):  
Boris Rodenak-Kladniew ◽  
Agustina Castro ◽  
Peter Stärkel ◽  
Marianela Galle ◽  
Rosana Crespo

Marine Drugs ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. 572 ◽  
Author(s):  
Shi-qi Lin ◽  
Fu-juan Jia ◽  
Cai-yun Zhang ◽  
Fang-yuan Liu ◽  
Jia-hui Ma ◽  
...  

Actinomycin V, extracted and separated from marine-derived actinomycete Streptomyces sp., as the superior potential replacement of actinomycin D (which showed defect for its hepatotoxicity) has revealed an ideal effect in the suppression of migration and invasion in human breast cancer cells as referred to in our previous study. In this study, the involvement of p53 in the cell cycle arrest and pro-apoptotic action of actinomycin V was investigated in human non-small-cell lung carcinoma A549 cells. Results from the 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide assay showed that cytotoxic activity of actinomycin V on A549 cells (with wild-type p53) was stronger than the NCI-H1299 cells (p53-deficient). Actinomycin V upregulated both of the protein and mRNA expression levels of p53, p21Waf1/Cip1 and Bax in A549 cells. For this situation, actinomycin V decreased the M-phase related proteins (Cdc2, Cdc25A and Cyclin B1) expression, arrested cells in G2/M phase and subsequently triggered apoptosis by mediating the Bcl-2 family proteins’ expression (Bax and Bcl-2). Furthermore, the effects of cell cycle arrest and apoptosis in A549 cells which were induced by actinomycin V could be reversed by the pifithrin-α, a specific inhibitor of p53 transcriptional activity. Collectively, our results suggest that actinomycin V causes up-regulation of p53 by which the growth of A549 cells is suppressed for cell cycle arrest and apoptosis.


2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Yongdong Dai ◽  
Xiang Lin ◽  
Wenzhi Xu ◽  
Xiaona Lin ◽  
Qianmeng Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document