Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions

2017 ◽  
Vol 25 (5) ◽  
pp. 4584-4595 ◽  
Author(s):  
Shu Chen ◽  
Guolu Yang ◽  
Jing Lu ◽  
Lei Wang
2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Fabiana Araújo ◽  
Hélio Rodrigues dos Santos ◽  
Vanessa Becker ◽  
José Luiz Attayde

Abstract Aim The aim of this study was to evaluate the performance of the coagulant Polyaluminium chloride (PAC) in water quality improvement of six eutrophic shallow lakes in Brazilian semiarid region. Methods We evaluated the effect of PAC in turbidity, humic substances (UV254), total phosphorus and chlorophyll-a concentration through laboratory jar tests. Results The results showed that PAC had a good performance in reducing total phosphorus concentrations and turbidity, with a reduced efficiency in removing chlorophyll-a and humic substances by sedimentation of flocks formed. Conclusions Addition of PAC is a potential tool for water quality improvement of eutrophic shallow lakes in Brazilian semiarid region but its efficiency depends on the pH and particulate and dissolved organic matter concentration in the lake or reservoir water.


2018 ◽  
Vol 30 (6) ◽  
pp. 1610-1615 ◽  
Author(s):  
WU Zhongkui ◽  
◽  
QIU Xiaochang ◽  
ZHANG Xiufeng ◽  
LIU Zhengwen ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1980
Author(s):  
Bushra Tasnim ◽  
Jalil A. Jamily ◽  
Xing Fang ◽  
Yangen Zhou ◽  
Joel S. Hayworth

In shallow lakes, water quality is mostly affected by weather conditions and some ecological processes which vary throughout the day. To understand and model diurnal-nocturnal variations, a deterministic, one-dimensional hourly lake water quality model MINLAKE2018 was modified from daily MINLAKE2012, and applied to five shallow lakes in Minnesota to simulate water temperature and dissolved oxygen (DO) over multiple years. A maximum diurnal water temperature variation of 11.40 °C and DO variation of 5.63 mg/L were simulated. The root-mean-square errors (RMSEs) of simulated hourly surface temperatures in five lakes range from 1.19 to 1.95 °C when compared with hourly data over 4–8 years. The RMSEs of temperature and DO simulations from MINLAKE2018 decreased by 17.3% and 18.2%, respectively, and Nash-Sutcliffe efficiency increased by 10.3% and 66.7%, respectively; indicating the hourly model performs better in comparison to daily MINLAKE2012. The hourly model uses variable hourly wind speeds to determine the turbulent diffusion coefficient in the epilimnion and produces more hours of temperature and DO stratification including stratification that lasted several hours on some of the days. The hourly model includes direct solar radiation heating to the bottom sediment that decreases magnitude of heat flux from or to the sediment.


2013 ◽  
Vol 68 (7) ◽  
pp. 1672-1678 ◽  
Author(s):  
M. Bozic ◽  
G. Nikolic ◽  
Z. Rudic ◽  
V. Raicevic ◽  
B. Lalevic

This paper deals with the consequences of cultural eutrophication and unconventional solutions for shallow lake restoration. Cultural eutrophication is the primary problem that affects especially shallow lakes, due to their physical characteristics (e.g. shallow depth, lack of stratification). Palic Lake, a very shallow Pannonian lake, received treated municipal wastewaters coming from the lagoons of a wastewater treatment plant. The sewage discharge mainly increased the nutrient load to the lake in the last decades. The lake sustainability is affected by inappropriate quality of water that flows into the lake, and abundance of deposited sediment. The technology that can provide both improvement of water quality and resolution of the sediment problem is a constructed wetland, which is designed to utilise the natural processes involving wetland vegetation, soil and their associated microbial assemblages to assist in additional water treatment. The technical solution is based on three key aspects: quality and quantity of deposited sediment, enriched by nutrients; effluent quality; desired lake water quality. A designed constructed wetland can accomplish the desired water quality and gradually remediate deposited sediment.


2002 ◽  
Vol 68 (10) ◽  
pp. 4740-4750 ◽  
Author(s):  
Koenraad Muylaert ◽  
Katleen Van der Gucht ◽  
Nele Vloemans ◽  
Luc De Meester ◽  
Moniek Gillis ◽  
...  

ABSTRACT Bacterial community composition was monitored in four shallow eutrophic lakes during one year using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified prokaryotic rDNA genes. Of the four lakes investigated, two were of the clearwater type and had dense stands of submerged macrophytes while two others were of the turbid type characterized by the occurrence of phytoplankton blooms. One turbid and one clearwater lake had high nutrient levels (total phosphorus, >100 μg liter−1) while the other lakes had relatively low nutrient levels (total phosphorus, <100 μg liter−1). For each lake, seasonal changes in the bacterial community were related to bottom-up (resources) and top-down (grazers) variables by using canonical correspondence analysis (CCA). Using an artificial model dataset to which potential sources of error associated with the use of relative band intensities in DGGE analysis were added, we found that preferential amplification of certain rDNA genes over others does not obscure the relationship between bacterial community composition and explanatory variables. Besides, using this artificial dataset as well as our own data, we found a better correlation between bacterial community composition and explanatory variables by using relative band intensities compared to using presence/absence data. While bacterial community composition was related to phytoplankton biomass in the high-nutrient lakes no such relation was found in the low-nutrient lakes, where the bacterial community is probably dependent on other organic matter sources. We used variation partitioning to evaluate top-down regulation of bacterial community composition after bottom-up regulation has been accounted for. Using this approach, we found no evidence for top-down regulation of bacterial community composition in the turbid lakes, while grazing by ciliates and daphnids (Daphnia and Ceriodaphnia) was significantly related to changes in the bacterial community in the clearwater lakes. Our results suggest that in eutrophic shallow lakes, seasonality of bacterial community structure is dependent on the dominant substrate source as well as on the food web structure.


Sign in / Sign up

Export Citation Format

Share Document