Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity

2017 ◽  
Vol 25 (8) ◽  
pp. 7638-7646 ◽  
Author(s):  
Zhenya Shi ◽  
Suqin Yang ◽  
Dan Han ◽  
Zhen Zhou ◽  
Xuanzhen Li ◽  
...  
Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 329-336
Author(s):  
A.R. Lubyanova ◽  
F.M. Shakirova ◽  
M.V. Bezrukova

We studied the immunohistochemical localization of abscisic acid (ABA), wheat germ agglutinin (WGA) and dehydrins in the roots of wheat seedlings (Triticum aestivum L.) during 24-epibrassinolide-pretreatment (EB-pretreatment) and PEG-induced dehydration. It was found coimmunolocalization of ABA, WGA and dehydrins in the cells of central cylinder of basal part untreated and EB-pretreated roots of wheat seedlings under normal conditions and under osmotic stress. Such mutual localization ABA and protective proteins, WGA and dehydrins, indicates the possible effect of their distribution in the tissues of EB-pretreated wheat roots during dehydration on the apoplastic barrier functioning, which apparently contributes to decrease the water loss under dehydration. Perhaps, the significant localization of ABA and wheat lectin in the metaxylem region enhances EB-induced transport of ABA and WGA from roots to shoots under stress. It can be assumed that brassinosteroids can serve as intermediates in the realization of the protective effect of WGA and wheat dehydrins during water deficit.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Wedad A. Kasim ◽  
Mohamed E. H. Osman ◽  
Mohamed N. Omar ◽  
Samar Salama

Abstract Background The effectiveness of two PGPB; Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11 was investigated in enhancing the drought tolerance of wheat (Triticum aestivum L.) seedlings cultivar Gemiza9. The inoculated or uninoculated grains were sown in unsterilized sandy soil and watered normally untill the 8th day. Drought stress was initiated by completely withholding water for 7 days (until wilting). Samples were collected after 15 days from sowing to evaluate some growth criteria, damage and defense indicators and to analyze the roots’ protein pattern. Results The results showed that inoculating wheat seedlings with these strains significantly diminished the inhibitory effects of drought stress on the relative water content of roots, shoots and leaves; area of leaves; contents of pigments (chlorophyll a and b) and ascorbic acid; and on the protein patterns of roots. Moreover, the bacterial inoculation notably reduced the drought-induced damage indicated by lower leakage of electrolytes and less accumulation of Malondialdehyde and hydrogen peroxide, surprisingly with less enhanced production of proline and activities of catalase and peroxidase than their uninoculated counterparts. Under normal conditions, inoculating wheat plants with these PGPB resulted in significantly promoted growth and elevated contents of pigments and altered protein patterns of roots. Conclusion Overall, we can say that both Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11 were able to deactivate the growth inhibition in wheat seedlings to some extent, while maintaining a certain level of efficient protection against damage under drought stress.


2012 ◽  
Vol 58 (No. 12) ◽  
pp. 534-539 ◽  
Author(s):  
G.Q. Wu ◽  
L.N. Zhang ◽  
Y.Y. Wang

 To investigate the responses of growth and antioxidant enzymes to osmotic stress in two different wheat cultivars, one drought tolerant (Heshangtou, HST) and the other drought sensitive (Longchun 15, LC15), 15-day-old wheat seedlings were exposed to osmotic stress of –0.25, –0.50, and –0.75 MPa for 2 days. It is found that osmotic stress decreased shoot length in both wheat cultivars, whereas to a lesser degree in HST than in LC15. The contents of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of shoot in both wheat cultivars were increased by osmotic stress. It is clear that MDA contents increased less in the more drought tolerant cultivar HST than in drought sensitive one LC15. On the contrary, POD and CAT activities increased more in HST than LC15 under osmotic stress. As the activity of SOD, however, no significant differences were found between HST and LC15. These results suggest that wheat cultivar HST has higher activities of antioxidant enzymes such as POD and CAT to cope with oxidative damage caused by osmotic stress compared to sensitive LC15.  


2013 ◽  
Vol 71 (4) ◽  
pp. 1663-1672 ◽  
Author(s):  
Saifullah ◽  
Nadeem Sarwar ◽  
Sadia Bibi ◽  
Mahtab Ahmad ◽  
Yong Sik Ok

1996 ◽  
Vol 44 (4) ◽  
pp. 499 ◽  
Author(s):  
S Seah ◽  
K Sivasithamparam ◽  
DW Turner

The effect of salicylic acid (SA) applied as foliar dip, foliar wipe, root drench or pre-germination soak on the susceptibility of wheat (Triticum aestivum L.) seedlings to Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici Walker (take-all fungus, Ggt) was studied. It was hypothesised that an increase in SA concentration applied using these methods would increase the resistance in wheat seedling roots against Ggt. Leaves (by foliar wipe and foliar dip) and roots (by root drench) of 1-2-week-old wheat seedlings grown in Lancelin sand, were treated with 0, 0.1 or 1 mM SA, and treatments of 0, 0.1 or 0.5 mM SA were applied in a pre-germination soak method. Ggt infection reduced (P Ͱ4 0.05) chlorophyll content and concentration and root length (P Ͱ4 0.10). Experiments that were conducted suggested that the SA treatments failed to induce a resistance response because they did not stimulate phenylalanine ammonia-lyase and peroxidase activities in the wheat seedling roots. Therefore, SA applied using these methods was not effective in reducing the susceptibility of wheat seedlings to Ggt. The chemical or biological induction of resistance in plant roots and its applicability as a root disease control strategy requires further clarification.


1994 ◽  
Vol 21 (1) ◽  
pp. 85 ◽  
Author(s):  
MLD Lima ◽  
L Copeland

Investigations have been carried out on morphological changes induced by aluminium ions in roots of wheat seedlings (Triticum aestivum L. cv. Vulcan). Lesions were evident on the surface of the roots after 4-8 h of exposure, and within 24 h there was increased vacuolation, loss of turgor, and severe cytoplasmic disorganisation in epidermal and peripheral cap cells. The central cap and cortical layers were also severely damaged by aluminium, but changes in the meristematic cells became evident only after more prolonged exposure of roots to aluminium. Mobilisation of starch in amyloplasts of peripheral and central cap cells of aluminium-stressed roots was particularly noticeable, and this was accompanied by an increase in the amount of extractable activity of starch-degrading enzymes. The possibility that the mobilisation of starch is linked to a coincident increase in fermentative metabolism in Al-stressed wheat roots is considered.


Sign in / Sign up

Export Citation Format

Share Document