scholarly journals Comparison of emerging contaminants in receiving waters downstream of a conventional wastewater treatment plant and a forest-water reuse system

2018 ◽  
Vol 25 (13) ◽  
pp. 12451-12463 ◽  
Author(s):  
Andrew D. McEachran ◽  
Melanie L. Hedgespeth ◽  
Seth R. Newton ◽  
Rebecca McMahen ◽  
Mark Strynar ◽  
...  
2019 ◽  
pp. 271-282
Author(s):  
Oddvar Georg Lindholm ◽  
Lars Aaby

Wet weather discharges consist mainly of washed out surface pollution in separate sewered areas, but in combined sewered areas; resuspended pipe deposits, surface washoff and sewage, discharging via combined sewer overflows (CSOs). Of the three mentioned sources, resuspended pipe solids is dominating over the other two and may contribute as much as 50 to 90 % of the total amount of the CSO. The CSO in a normal catchment may also on an annual bases be of the same amount, or even twice as much as the effluent from the wastewater treatment plant (WWTP). If the receiving waters are vulnerable to shock loads on a daily base, it is important to be aware that the amount of CSO might, at its most adverse be up to I 00 times more than the effluent from the WWTP during a day. The annual discharge via CSOs in a catchment may easily vary with a factor of up to 8 from the driest to the wettest year, during time series of 20 to 40 years.


2020 ◽  
Author(s):  
Nicolas Caradot ◽  
Wolfgang Seis ◽  
Dan Angelescu ◽  
Vaizanne Huynh ◽  
Andreas Hausot ◽  
...  

<div> <p>Digital solutions open up a variety of opportunities for the water sector. Digital water is now seen not as an ‘option’ but as an ‘imperative’ (Sarni et al., 2019) for a more sustainable and secure water management. Many solutions leverage the latest innovations developed across industries and business activities including advanced sensors, data analytics and artificial intelligence. The potential of digitalization might outweigh its associated risk if digital solutions are successfully implemented addressing a series of gaps and barriers such as ICT governance, cybersecurity, data protection, interoperability and capacity building.</p> <p>Within this context, the H2020 innovation project digital-water.city (DWC) aims at boosting the integrated management of waters systems in five major European cities – Berlin, Copenhagen, Milan, Paris and Sofia – by leveraging the potential of data and digital technologies. Goal is to quantify the benefits of a panel of 15 innovative digital solutions and achieve their long-term uptake and successful integration in the existing digital systems and governance processes.</p> <p>One of these promising technology is a new sensor for real-time bacterial measurements, manufactured by the company Fluidion (ALERT System; Angelescu et al., 2019). The device is fully autonomous, remotely controllable, installed in-situ and allows rapid quantification of E.coli and enterococci concentrations.</p> <p>Ensuring microbial safety is one of the key objectives of bathing water management, and it is also a critical aspect for water reuse. The European Bathing Water Directive (BWD) (76/160/EEC, 2006) uses fecal indicator bacteria for quality assessment of marine and inland waters. A major challenge regarding bathing water management is that concentrations of fecal bacteria may show spatial and temporal variability. In urban rivers, discharges from CSO and stormwater may contain high amounts of fecal bacteria and contaminate bathing water quality. Bathing water surveillance in Europe is only based on monthly grab samples and event-scale variability is detected only by chance as pollution events may occur between sampling intervals.</p> <p>The ALERT System is currently tested in Berlin and Paris using side by side laboratory comparison to understand temporal variability and spatial bacterial distribution in the local rivers (Seine, Marne and Spree). In Milan, the system is being deployed to provide early warning of bacterial and toxic contamination linked to water reuse at a major wastewater treatment plant. Preliminary analysis have shown that the device shows metrological capabilities comparable to those of an approved laboratory using MPN microplate techniques and is suitable for bacterial pollutant concentration ranges such as urban streams and wastewater treatment plant.</p> <p>The technology opens up new opportunities for the water sector for a range of applications such as the planning of pollution reduction measures, the continuous monitoring of bathing water quality and the assessment of contamination risk by the reuse of treated wastewater for irrigation. In particular, it is a key innovation to contribute to the objective of Paris city and other local municipalities to provide permanent and safe opportunities for bathing in the Seine river for the 2024 Olympic and Paralympic Games, and beyond.</p> </div>


2001 ◽  
Vol 15 (4) ◽  
pp. 461 ◽  
Author(s):  
D. Manville ◽  
E.J. Kleintop ◽  
B.J. Miller ◽  
E.M. Davis ◽  
J.J. Mathewson ◽  
...  

2012 ◽  
Vol 65 (11) ◽  
pp. 2016-2023 ◽  
Author(s):  
Cristina Pablos ◽  
Rafael van Grieken ◽  
Javier Marugán ◽  
Alejandra Muñoz

Simultaneous Escherichia coli inactivation and oxidation of pharmaceuticals in simulated wastewater treatment plant effluents has been investigated using a photocatalytic treatment with TiO2 in suspension and immobilised onto a fixed-bed reactor. Non-photocatalytic reference experiments of dark adsorption and photolysis showed a higher sensitivity of E. coli towards the chemical composition of water in comparison with the concentration of pharmaceuticals that remains unaffected. Moreover, it must be underlined that the presence of pharmaceuticals (including antibiotics) did not seem to affect the bacterial viability at such low concentrations. Concerning photocatalytic experiments, both suspended and immobilised TiO2 were able to simultaneously inactivate and oxidise both kinds of pollutants (bacteria and pharmaceuticals). The fixed-bed reactor showed similar activity to that of the slurry without deactivation after several cycles of reuse. That makes TiO2 photocatalysis a quite interesting technology for the treatment of drinking water supplies or wastewater plant effluents, allowing the removal of emerging contaminants such as pharmaceuticals during the disinfection treatment.


Sign in / Sign up

Export Citation Format

Share Document