A system dynamics model of China’s electric power structure adjustment with constraints of PM10 emission reduction

2018 ◽  
Vol 25 (18) ◽  
pp. 17540-17552 ◽  
Author(s):  
Xiaopeng Guo ◽  
Dongfang Ren ◽  
Xiaodan Guo
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2108 ◽  
Author(s):  
Yulei Xie ◽  
Linrui Wang ◽  
Guohe Huang ◽  
Dehong Xia ◽  
Ling Ji

In this study, in order to improve regional energy system adjustment, a multistage stochastic inexact robust programming (MSIRP) is proposed for electric-power generation planning and structure adjustment management under uncertainty. Scenario-based inexact multistage stochastic programming and stochastic robust optimization were integrated into general programming to reflect uncertainties that were expressed as interval values and probability distributions in the objective function and constraints. An MSIRP-based energy system optimization model is proposed for electric-power structure management of Zibo City in Shandong Province, China. Three power demand scenarios associated with electric-power structure adjustment, imported electricity, and emission reduction were designed to obtain multiple decision schemes for supporting regional sustainable energy system development. The power generation schemes, imported electricity, and emissions of CO2 and air pollutants were analyzed. The results indicated that the model can effectively not only provide a more stable energy supply strategies and electric-power structure adjustment schemes, but also improve the balanced development between conventional and new clear power generation technologies under uncertainty.


2020 ◽  
Vol 12 (18) ◽  
pp. 7517
Author(s):  
Zhaodan Wu ◽  
Yi Zhang ◽  
Yu Hua ◽  
Quanliang Ye ◽  
Lixiao Xu ◽  
...  

An accurate and practically useful evaluation of regional water scarcity is a necessary procedure in scarcity monitoring and threat mitigation. From the perspective of virtual water, this study proposed an improved system dynamics model to evaluate regional water scarcity (WS), including a case study of Henan province, China. We enhanced the existing system dynamics model of WS evaluation from a virtual water perspective by (1) defining WS as the ratio of the consumption-based blue water footprint to water availability, in order to compare the water requirements that need to be met to satisfy the local demand of goods and services with water supply; (2) integrating the economic growth, trade, and water use efficiency in the tertiary industry (e.g., accommodation, food and beverage services) into the model, in order to improve the accuracy of WS assessment and help find more specific measures to reduce WS by factor adjustment; (3) distinguishing the product use structure matrix, as well as the sectoral direct water use coefficient, in local regions from that in other domestic regions and foreign countries, and identifying the regional use structure matrices of products from these three kinds of regions, in order to increase the calculating veracity; and (4) displaying performances of the society, economy, and environment in WS reduction, in order to offer a more comprehensive reference for practical policy decisions. The case study results show that Henan has been suffering from, and in the near future could continue to face, water scarcity, with an average of 2.19 and an annual rise of 1.37% during 2008–2030. In the scenario comparison of current development, production structure adjustment, technology upgrade, and trade structure adjustment in supply-side structural reform of Henan from 2019 to 2030, WS could be reduced by updating production structures into less production of agricultural products or other sectors with a high production-based water footprint (with the smallest average WS of 2.02 and the second smallest total population and GDP, i.e., gross domestic production), technology enhancement in water saving, purification and pollution control (with the second smallest average WS of 2.04 and the largest total population, GDP and total available water resources). Furthermore, for the agricultural products or other sectors with high domestic/international virtual water outflow (inflow), if we reduce (increase) their percentage of outflow (inflow) in the industry involved, WS will increase only more slightly than that when we keep the current development trend, with the smallest total population. Potential measures for alleviating WS should be taken comprehensively, with priorities being identified according to the socioeconomic and environmental performance. Our model can be useful for practical policymaking and valuable for relevant research worldwide.


2010 ◽  
Vol 20 (2) ◽  
pp. 59-62
Author(s):  
Patrick Einzinger ◽  
Günther Zauner ◽  
G. Ganjeizadeh-Rouhani

Systems ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 56
Author(s):  
Urmila Basu Mallick ◽  
Marja H. Bakermans ◽  
Khalid Saeed

Using Indian free-ranging dogs (FRD) as a case study, we propose a novel intervention of social integration alongside previously proposed methods for dealing with FRD populations. Our study subsumes population dynamics, funding avenues, and innovative strategies to maintain FRD welfare and provide societal benefits. We develop a comprehensive system dynamics model, featuring identifiable parameters customizable for any management context and imperative for successfully planning a widescale FRD population intervention. We examine policy resistance and simulate conventional interventions alongside the proposed social integration effort to compare monetary and social rewards, as well as costs and unintended consequences. For challenging socioeconomic ecological contexts, policy resistance is best overcome by shifting priority strategically between social integration and conventional techniques. The results suggest that social integration can financially support a long-term FRD intervention, while transforming a “pest” population into a resource for animal-assisted health interventions, law enforcement, and conservation efforts.


Sign in / Sign up

Export Citation Format

Share Document