Sorption of ionic and neutral species of pharmaceuticals to loessial soil amended with biochars

2019 ◽  
Vol 26 (35) ◽  
pp. 35871-35881 ◽  
Author(s):  
Lin Wu ◽  
Erping Bi
1988 ◽  
Vol 102 ◽  
pp. 243-246
Author(s):  
J.T. Costello ◽  
W.G. Lynam ◽  
P.K. Carroll

AbstractThe dual laser-produced plasma technique for the study of ionic absorption spectra has been developed by the use of two Q-switched ruby lasers to enable independent generation of the absorbing and back-lighting plasmas. Optical pulse handling is used in the coupling cicuits to enable reproducible pulse delays from 250 nsec. to 10 msec, to be achieved. At delay times > 700 nsec. spectra of essentially pure neutral species are observed. The technique is valuable, not only for obtaining the neutral spectra of highly refractory and/or corrosive materials but also for studying behaviour of ionic species as a function of time. Typical spectra are shown in Fig. 1.


Author(s):  
M. L. Knotek

Modern surface analysis is based largely upon the use of ionizing radiation to probe the electronic and atomic structure of the surfaces physical and chemical makeup. In many of these studies the ionizing radiation used as the primary probe is found to induce changes in the structure and makeup of the surface, especially when electrons are employed. A number of techniques employ the phenomenon of radiation induced desorption as a means of probing the nature of the surface bond. These include Electron- and Photon-Stimulated Desorption (ESD and PSD) which measure desorbed ionic and neutral species as they leave the surface after the surface has been excited by some incident ionizing particle. There has recently been a great deal of activity in determining the relationship between the nature of chemical bonding and its susceptibility to radiation damage.


2015 ◽  
Vol 15 (8) ◽  
pp. 4145-4159 ◽  
Author(s):  
A. P. Praplan ◽  
S. Schobesberger ◽  
F. Bianchi ◽  
M. P. Rissanen ◽  
M. Ehn ◽  
...  

Abstract. This study presents the difference between oxidised organic compounds formed by α-pinene oxidation under various conditions in the CLOUD environmental chamber: (1) pure ozonolysis (in the presence of hydrogen as hydroxyl radical (OH) scavenger) and (2) OH oxidation (initiated by nitrous acid (HONO) photolysis by ultraviolet light) in the absence of ozone. We discuss results from three Atmospheric Pressure interface Time-of-Flight (APi-TOF) mass spectrometers measuring simultaneously the composition of naturally charged as well as neutral species (via chemical ionisation with nitrate). Natural chemical ionisation takes place in the CLOUD chamber and organic oxidised compounds form clusters with nitrate, bisulfate, bisulfate/sulfuric acid clusters, ammonium, and dimethylaminium, or get protonated. The results from this study show that this process is selective for various oxidised organic compounds with low molar mass and ions, so that in order to obtain a comprehensive picture of the elemental composition of oxidation products and their clustering behaviour, several instruments must be used. We compare oxidation products containing 10 and 20 carbon atoms and show that highly oxidised organic compounds are formed in the early stages of the oxidation.


2013 ◽  
Vol 54 (1) ◽  
pp. 163-173
Author(s):  
Marian Wesołowski ◽  
Cezary Kwiatkowski

The effect of the number of mechanical operations in sugar beets plantation on the amount and species composition of weed seeds in the 0-5 cm deep layer of the loessial soil was studied. It has been proved that reduction in the number of weed seeds depends upon both the frequency of weeding-out operations and the level of agrotechnic. The highest decrease in the number of fruit and weed seeds was caused by eightfold weed removal which took place during the period from emergence phase to the joining of sugar beet rows. Application of increased mineral fertilization, microelements, fungicides, and insecticides caused the number of weed seeds to be reduced by 5,9%, in comparison to extensive agrotechnical level.


Sign in / Sign up

Export Citation Format

Share Document