The relation of structure and metal-support interaction with three-way catalytic performance of Rh/(Ce,Zr,La)O2 catalysts

2020 ◽  
Vol 27 (24) ◽  
pp. 30352-30366
Author(s):  
Ting Wang ◽  
Yan Li ◽  
Ren-xian Zhou
2021 ◽  
Author(s):  
Liang Wei ◽  
Jian Chen ◽  
Shuai Lyu ◽  
Chengchao Liu ◽  
Yanxi Zhao ◽  
...  

The delicate balance between dispersion and reduction of the Co-based Fischer–Tropsch synthesis catalyst is the golden key to enhancing catalytic performance, which highly depends on an optimized metal–support interaction. In...


Nanoscale ◽  
2020 ◽  
Vol 12 (27) ◽  
pp. 14825-14830
Author(s):  
Kai-Qiang Jing ◽  
Yu-Qing Fu ◽  
Zhi-Qiao Wang ◽  
Zhe-Ning Chen ◽  
Hong-Zi Tan ◽  
...  

Zn2+-Modified MgAl-LDH with ultra-low Pd cluster loading was synthesized. The higher adsorption energy and strong covalent metal–support interaction via forming Pd–Zn bonds over Pd/ZnMgAl-LDH account for the robust catalytic performance.


RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 29040-29047 ◽  
Author(s):  
Bin Wang ◽  
Chao Wen ◽  
Yuanyuan Cui ◽  
Xi Chen ◽  
Yu Dong ◽  
...  

Crystal phase of titania support plays an important role in catalytic hydrogenation of dimethyl oxalate. Optimized catalytic performance was achieved for the Cu/P25 due to the intimate metal support interaction.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3149
Author(s):  
Songshan Zhu ◽  
Yunzhu Wang ◽  
Jichang Lu ◽  
Huihui Lu ◽  
Sufang He ◽  
...  

Steam reforming of glycerol to produce hydrogen is considered to be the very promising strategy to generate clean and renewable energy. The incipient-wetness impregnation method was used to load Ni on the reducible carrier TiO2 (P25). In the process of catalyst preparation, the interaction and electronic effect between metal Ni and support TiO2 were adjusted by changing the calcination temperature, and then the activity and hydrogen production of glycerol steam reforming reaction (GSR) was explored. A series of modern characterizations including XRD, UV-vis DRS, BET, XPS, NH3-TPD, H2-TPR, TG, and Raman have been applied to systematically characterize the catalysts. The characterization results showed that the calcination temperature can contribute to varying degrees of influences on the acidity and basicity of the Ni/TiO2 catalyst, the specific surface area, together with the interaction force between Ni and the support. When the Ni/TiO2 catalyst was calcined at 600 °C, the Ni species can be produced in the form of granular NiTiO3 spinel. Consequently, due to the moderate metal–support interaction and electronic activity formed between the Ni species and the reducible support TiO2 in the NiO/Ti-600C catalyst, the granular NiTiO3 spinel can be reduced to a smaller Ni0 at a lower temperature, and thus to exhibit the best catalytic performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 32290-32297 ◽  
Author(s):  
Cun-Zhi Li ◽  
Zhen-Bo Wang ◽  
Xu-Lei Sui ◽  
Li-Mei Zhang ◽  
Da-Ming Gu

A novel graphitic-C3N4 quantum dot modified carbon nanotube composite supported PtRu catalyst is prepared by π–π stacking. The enhanced catalytic performance of the catalyst is due to the better dispersion of PtRu NPs and the strong metal–support interaction (SMSI).


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1470
Author(s):  
Nurul Asikin-Mijan ◽  
Haslinda Mohd Sidek ◽  
Abdulkareem G. AlSultan ◽  
Nurul Ahtirah Azman ◽  
Nur Athirah Adzahar ◽  
...  

Biofuels have been derived from various feedstocks by using thermochemical or biochemical procedures. In order to synthesise liquid and gas biofuel efficiently, single-atom catalysts (SACs) and single-atom alloys (SAAs) have been used in the reaction to promote it. SACs are made up of single metal atoms that are anchored or confined to a suitable support to keep them stable, while SAAs are materials generated by bi- and multi-metallic complexes, where one of these metals is atomically distributed in such a material. The structure of SACs and SAAs influences their catalytic performance. The challenge to practically using SACs in biofuel production is to design SACs and SAAs that are stable and able to operate efficiently during reaction. Hence, the present study reviews the system and configuration of SACs and SAAs, stabilisation strategies such as mutual metal support interaction and geometric coordination, and the synthesis strategies. This paper aims to provide useful and informative knowledge about the current synthesis strategies of SACs and SAAs for future development in the field of biofuel production.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaorui Du ◽  
Yike Huang ◽  
Xiaoli Pan ◽  
Bing Han ◽  
Yang Su ◽  
...  

AbstractThe strong metal-support interaction (SMSI) has long been studied in heterogonous catalysis on account of its importance in stabilizing active metals and tuning catalytic performance. As a dynamic process taking place at the metal-support interface, the SMSI is closely related to the metal surface properties which are usually affected by the size of metal nanoparticles (NPs). In this work we report the discovery of a size effect on classical SMSI in Au/TiO2 catalyst where larger Au particles are more prone to be encapsulated than smaller ones. A thermodynamic equilibrium model was established to describe this phenomenon. According to this finding, the catalytic performance of Au/TiO2 catalyst with uneven size distribution can be improved by selectively encapsulating the large Au NPs in a hydrogenation reaction. This work not only brings in-depth understanding of the SMSI phenomenon and its formation mechanism, but also provides an alternative approach to refine catalyst performance.


Sign in / Sign up

Export Citation Format

Share Document