Analysis of turbulent flow structures in the straight rectangular open channel with floating vegetated islands

2020 ◽  
Vol 27 (21) ◽  
pp. 26856-26867
Author(s):  
Xuecheng Fu ◽  
Feifei Wang ◽  
Mengyang Liu ◽  
Wenxin Huai
2020 ◽  
Author(s):  
Eliisa Lotsari ◽  
Maria Kämäri ◽  
Petteri Alho ◽  
Elina Kasvi

<p>Macro-turbulent flows during ice-covered and open-channel conditions, and their impacts on the total sediment transport, have not been studied widely in northern rivers. Previous studies have detected these processes, for example, only at the inlet area of one meander bend, or only during low discharge conditions. Thus, for understanding their impacts on the total sediment transport, it is needed to detect these macro-turbulent flow structures from a variety of cold region rivers, from multiple years, and also from a variety of different flow magnitude conditions. The pulses of high flow velocities related to these macro-turbulent structures may be important for determining the seasonal total sediment amount transported to the arctic ocean.</p><p> </p><p>The aim is 1) to detect the macro-turbulent flow in a meandering river at ice-covered low flow condition, and compare it to both high and low magnitude open-channel flow conditions. 2) Within a meander bend, the macro-turbulent flow will be compared between its inlet, apex and outlet sections. 3) The shear forces will be analyzed to detect the effects of macro-turbulent flow on potential sediment transport and channel development. The analyses are based on 5–10 minutes long moving boat Acoustic Doppler Current Profiler (ADCP) measurements from a meandering sub-arctic river. The measurements have been done in February and May during 2016–2019, and in September during 2016-2018. The preliminary results of this study are presented. The hypothesis is that the sediment transport potential of a sub-arctic river could be higher during all seasons than previously expected due to the pulses of high velocities related to macro-turbulent flow structures.</p>


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1718
Author(s):  
Hasan Zobeyer ◽  
Abul B. M. Baki ◽  
Saika Nowshin Nowrin

The flow hydrodynamics around a single cylinder differ significantly from the flow fields around two cylinders in a tandem or side-by-side arrangement. In this study, the experimental results on the mean and turbulence characteristics of flow generated by a pair of cylinders placed in tandem in an open-channel flume are presented. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. This study investigated the effect of cylinder spacing at 3D, 6D, and 9D (center to center) distances on the mean and turbulent flow profiles and the distribution of near-bed shear stress behind the tandem cylinders in the plane of symmetry, where D is the cylinder diameter. The results revealed that the downstream cylinder influenced the flow development between cylinders (i.e., midstream) with 3D, 6D, and 9D spacing. However, the downstream cylinder controlled the flow recirculation length midstream for the 3D distance and showed zero interruption in the 6D and 9D distances. The peak of the turbulent metrics generally occurred near the end of the recirculation zone in all scenarios.


2021 ◽  
Vol 33 (4) ◽  
pp. 045106
Author(s):  
SeokKoo Kang ◽  
Ali Khosronejad ◽  
Xiaolei Yang

2016 ◽  
Vol 12 ◽  
pp. 130-147 ◽  
Author(s):  
Saiyu Yuan ◽  
Hongwu Tang ◽  
Yang Xiao ◽  
Xuehan Qiu ◽  
Huiming Zhang ◽  
...  

2017 ◽  
Vol 41 (5) ◽  
pp. 771-786 ◽  
Author(s):  
Ashif Perwez ◽  
Shreyak Shende ◽  
Rakesh Kumar

An experimental and numerical investigation is performed to study the effect of dimple and protrusion geometry on the heat transfer enhancement and the friction factor of surfaces with dimples and protrusions subjected to turbulent flow. The parameters used to compare the spherical dimples and protrusions are Nusselt Number, friction factor, and flow pattern. These parameters are obtained for a Reynolds number of 10500-60900. The spherical dimple results showed the greater heat transfer, which is about 6.97% higher and pressure loss which is 5.07% lower than the spherical protrusion. The realistic heat transfer augmentation capabilities of channels with dimples and protrusions can be studied from the experimental results. The comparison is made with respect to the smooth rectangular channel under the same flow and thermal boundary conditions. The numerical analysis is performed which shows the different vortex flow structures of the spherical dimples and protrusions channel.


2021 ◽  
Author(s):  
Hae Seong Jeon ◽  
Ji Min Kim ◽  
Yeon Moon Choo

Abstract Korea’s river design standards set general design standards for river and river-related projects in Korea, which systematize the technologies and methods involved in river-related projects. This includes measurement methods for parts necessary for river design, but do not include information on shear stress. Shear Stress is to one of the factors necessary for river design and operation. Shear stress is one of the most important hydraulic factors used in the fields of water especially for artificial channel design. Shear stress is calculated from the frictional force caused by viscosity and fluctuating fluid velocity. Current methods are based on past calculations, but factors such as boundary shear stress or energy gradient are difficult to actually measure or estimate. The point velocity throughout the entire cross section is needed to calculate the velocity gradient. In other words, the current Korea’s river design standards use tractive force, critical tractive force instead of shear stress because it is more difficult to calculate the shear stress in the current method. However, it is difficult to calculate the exact value due to the limitations of the formula to obtain the river factor called the tractive force. In addition, tractive force has limitations that use empirically identified base value for use in practice. This paper focuses on the modeling of shear stress distribution in open channel turbulent flow using entropy theory. In addition, this study suggests shear stress distribution formula, which can be easily used in practice after calculating the river-specific factor T. and that the part of the tractive force and critical tractive force in the Korea’s river design standards should be modified by the shear stress obtained by the proposed shear stress distribution method. The present study therefore focuses on the modeling of shear stress distribution in open channel turbulent flow using entropy theory. The shear stress distribution model is tested using a wide range of forty-two experimental runs collected from the literature. Then, an error analysis is performed to further evaluate the accuracy of the proposed model. The results revealed a correlation coefficient of approximately 0.95–0.99, indicating that the proposed method can estimate shear stress distribution accurately. Based on this, the results of the distribution of shear stress after calculating the river-specific factors show a correlation coefficient of about 0.86 to 0.98, which suggests that the equation can be applied in practice.


2006 ◽  
Vol 27 (6) ◽  
pp. 1010-1027 ◽  
Author(s):  
M. Agelinchaab ◽  
M.F. Tachie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document