Numerical investigation of the thermal effect on flow and dispersion of rooftop stack emissions with wind tunnel experimental validations

Author(s):  
Yuan-Dong Huang ◽  
Nuo Xu ◽  
Su-Qi Ren ◽  
Li-Bing Qian ◽  
Peng-Yi Cui
2010 ◽  
Vol 47 (2) ◽  
pp. 708-714 ◽  
Author(s):  
Roberto Flores ◽  
Enrique Ortega ◽  
Eugenio Oñate

2022 ◽  
Author(s):  
Siddhant P. Desai ◽  
Joseph A. Schetz ◽  
Azwan Aris ◽  
Shardul S. Panwar ◽  
Rikin Gupta

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 28
Author(s):  
John Hart ◽  
Jonathan Potts

This paper presents the first scale resolving computational fluid dynamic (CFD) investigation of a geometrically realistic feather shuttlecock with rotation at a high Reynolds number. Rotation was found to reduce the drag coefficient of the shuttlecock. However, the drag coefficient is shown to be independent of the Reynolds number for both rotating and statically fixed shuttlecocks. Particular attention is given to the influence of rotation on the development of flow structures. Rotation is shown to have a clear influence on the formation of flow structures particularly from the feather vanes, and aft of the shuttlecock base. This further raises concerns regarding wind tunnel studies that use traditional experimental sting mounts; typically inserted into this aft region, they have potential to compromise both flow structure and resultant drag forces. As CFD does not necessitate use of a sting with proper application, it has great potential for a detailed study and analysis of shuttlecocks.


Author(s):  
M.F. Mohamed ◽  
P.L. Madhavan ◽  
E. Manoj ◽  
K. Sivakumar

The purpose of this work is to cut back the drag, lift and aerodynamic in-stability of a sedan car at high speed levels. In early times, the cars accustomed have a flat faces, sharp edge, conjointly had higher mileage and potency. However later because of the emergence of fuel crisis, scientists improved the model of cars with regard to dynamics of the fluid around the body. Thus, it changes the structure of cars with respect to aeromechanics. Simulation of a vehicle had been done using computational fluid dynamics to obtain the coefficient of drag and coefficient of lift. Finally, these coefficients from computational fluid dynamics are compared wind tunnel simulation.


2014 ◽  
Vol 541-542 ◽  
pp. 608-612 ◽  
Author(s):  
Jia Lin ◽  
Lian Jin Zhao ◽  
Jian Hua Wang

A numerical investigation on the space (0-46km) aero-thermodynamic characteristics of a nose cone model was performed using commercial software STAR-CCM++. Turbulence model and numerical calculation strategy was validated by the experimental phenomenon captured in a ground high-enthalpy wind tunnel and empirical formula calculation. The purpose of this paper is to discuss the distinctions between the experiment performed in ground high-enthalpy wind tunnel environment and real space flight using the validated numerical strategy, as well as the aero-thermodynamic characteristics of the nose cone model in different flight altitudes and Mach numbers, which will give a guidance to active cooling of spacecraft in real supersonic flight.


Sign in / Sign up

Export Citation Format

Share Document