Environmental consequences of the treatment of corn contaminated by aflatoxin B1 with co-digestion and co-composting in a life cycle perspective

Author(s):  
Francesco Di Maria ◽  
Federico Sisani ◽  
Giovanni Gigliotti ◽  
Daniela Pezzolla ◽  
Chiara Tacconi ◽  
...  
2012 ◽  
Author(s):  
Jerke W De Vries ◽  
André J.A Aarnink ◽  
Peter W.G Groot Koerkamp ◽  
Imke J.M De Boer

2021 ◽  
Vol 13 (8) ◽  
pp. 4487
Author(s):  
Maghsoud Amiri ◽  
Mohammad Hashemi-Tabatabaei ◽  
Mohammad Ghahremanloo ◽  
Mehdi Keshavarz-Ghorabaee ◽  
Edmundas Kazimieras Zavadskas ◽  
...  

Evaluating the life cycle of buildings is a valuable tool for assessing sustainability and analyzing environmental consequences throughout the construction operations of buildings. In this study, in order to determine the importance of building life cycle evaluation indicators, a new combination method was used based on a quantitative-qualitative method (QQM) and a simplified best-worst method (SBWM). The SBWM method was used because it simplifies BWM calculations and does not require solving complex mathematical models. Reducing the time required to perform calculations and eliminating the need for complicated computer software are among the advantages of the proposed method. The QQM method has also been used due to its ability to evaluate quantitative and qualitative criteria simultaneously. The feasibility and applicability of the SBWM were examined using three numerical examples and a case study, and the results were evaluated. The results of the case study showed that the criteria of the estimated cost, comfort level, and basic floor area were, in order, the most important criteria among the others. The results of the numerical examples and the case study showed that the proposed method had a lower total deviation (TD) compared to the basic BWM. Sensitivity analysis results also confirmed that the proposed approach has a high degree of robustness for ranking and weighting criteria.


2021 ◽  
Vol 11 (7) ◽  
pp. 2964
Author(s):  
Gregor Braun ◽  
Claudia Som ◽  
Mélanie Schmutz ◽  
Roland Hischier

The textile industry is recognized as being one of the most polluting industries. Thus, the European Union aims to transform the textile industry with its “European Green Deal” and “Circular Economy Action Plan”. Awareness regarding the environmental impact of textiles is increasing and initiatives are appearing to make more sustainable products with a strong wish to move towards a circular economy. One of these initiatives is wear2wearTM, a collaboration consisting of multiple companies aiming to close the loop for polyester textiles. However, designing a circular product system does not lead automatically to lower environmental impacts. Therefore, a Life Cycle Assessment study has been conducted in order to compare the environmental impacts of a circular with a linear workwear jacket. The results show that a thoughtful “circular economy system” design approach can result in significantly lower environmental impacts than linear product systems. The study illustrates at the same time the necessity for Life Cycle Assessment practitioners to go beyond a simple comparison of one product to another when it comes to circular economy. Such products require a wider system analysis approach that takes into account multiple loops, having interconnected energy and material flows through reuse, remanufacture, and various recycling practices.


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


Author(s):  
Jean‐Baptiste E. Thomas ◽  
Rajib Sinha ◽  
Åsa Strand ◽  
Tore Söderqvist ◽  
Johanna Stadmark ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1036
Author(s):  
Siri Willskytt

Consumable products have received less attention in the circular economy (CE), particularly in regard to the design of resource-efficient products. This literature review investigates the extent to which existing design guidelines for resource-efficient products are applicable to consumables. This analysis is divided into two parts. The first investigates the extent to which general product-design guidelines (i.e., applicable to both durables and consumables) are applicable to consumables. This analysis also scrutinizes the type of recommendations presented by the ecodesign and circular product design, to investigate the novel aspects of the CE in product design. The second analysis examines the type of design considerations the literature on product-type specific design guidelines recommends for specific consumables and whether such guidelines are transferable. The analysis of general guidelines showed that, although guidelines are intended to be general and applicable to many types of products, their applicability to consumable products is limited. Less than half of their recommendations can be applied to consumables. The analysis also identified several design considerations that are transferable between product-specific design guidelines. This paper shows the importance of the life-cycle perspective in product design, to maximize the opportunities to improve consumables.


Sign in / Sign up

Export Citation Format

Share Document