A review on current techniques used in India for rice mill wastewater treatment and emerging techniques with valuable by-products

Author(s):  
Suresh Kumar ◽  
Surinder Deswal
1996 ◽  
Vol 33 (3) ◽  
pp. 119-130 ◽  
Author(s):  
Allen C. Chao ◽  
Sergio J. de Luca ◽  
Carlos N. Idle

Studies concerning the treatment, stabilization and final disposal of biosolids, one of the by-products of wastewater treatment, in environmental recovery, have been intensified by the sanitary and environmental effects of land disposal. The careful assessment of biosolid quality shows that, when appropriately managed, the environmental risks of their uses can be minimized by chemical stabilization, and biosolids could even be used as fertilizer and soil conditioner. A research study of biosolid stabilization was performed using lime as a standard process compared to potassium ferrate (VI). The chances of leaching and solubilization of metals were tested, simulating conditions for disposal in the environment. The sanitary effectiveness in terms of pathogens (bacteria, fungi and helminth eggs) were also evaluated. Experiments were performed on the lime and ferrate(VI) treatment of compounds such as ammonia, nitrate, soluble sulphides, and total sulphates, indicators of odouriferous offensive compounds which might occasionally prevent some uses of the solids, and the results are presented in this paper. Wastewater Treatment Plants emit offensive odours generated during the sewage treatment process, as well as during the treatment and the management of biosolids. This occurs in the drying beds and the spreading of biosolids on land, due to the high concentrations of sulphur compounds, nitrogen compounds, acids and organic compounds (aldehydes and ketones). The potassium ferrate(VI) utilized in the research is a powerful oxidizing agent throughout the pH scale, with the advantage of not generating by-products which will cause toxicity or mutagenicity (DE LUCA, 1981). The ion ferrate(VI) has greater oxidizing power than permanganate, e.g., it oxidizes reduced sulfur forms to sulphate, ammonia to nitrate, hypochlorite to chlorite and chlorite to chlorate(DE LUCA et al., 1992; CHAO et al., 1992). This paper shows that, as expected, the potassium ferrate (VI) treatment replaces several chemical products utilized for odour control of sludges, mainly aggressive odours caused by ammonia and sulphides, through the formation of precipitates with iron compounds. Ferrate (VI) has often been shown to destroy soluble sulphides, transforming them into sulphate. The generation of oxygen in the decomposition of ferrate(VI) increases its oxidizing power. Ferrate(VI) applied to sludges also has the double effect of transforming ammonia into nitrates, such that this product takes the place of sulphates, acting as an electron acceptor, thus preventing the development of further odours when biosolids are utilized.


Author(s):  
Julija Brovkina ◽  
Galija Shulga ◽  
Jurijs Ozolins ◽  
Zilgma Irbe ◽  
Maris Turks ◽  
...  

In the process of wastewater treatment by coagulation a large amount of sediment is being produced, which is the main drawback of this method. Therefore, the development of utilization or recirculation technology of the waste obtained, the research of the obtained by-products should be conducted. Within the scope of this work, the sediment, that is being formed during the coagulation of the model wastewater containing the wood originated pollutants, was studied. Using the aluminium-containing composition coagulant on a base of polyaluminium chloride, coagulates characterized by the low sludge volume index within 30 minutes (89 ml g-1), and the optimal time of sedimentation is 20-30 minutes. The coagulate particles have an average size of 45.8 μm. The derived coagulate is composed primarily of carbon (27.9%), oxygen (49.4%) and aluminum (10.9%). Carbon, oxygen and hydrogen belong to an organic part of coagulate-the wood pollutants, which, in turn, has a high content of hemicellulose. It is concluded that the existing hemicellulose in the obtained coagulate is characterized by O-acetyl-4-O-methyl-D-glucuron-β-D-xylan with β-(1-4)-glucomannose.


2004 ◽  
Vol 49 (1) ◽  
pp. 139-146 ◽  
Author(s):  
S. Rio ◽  
C. Faur-Brasquet ◽  
L. Le Coq ◽  
D. Lecomte ◽  
P. Le Cloirec

Sewage sludges produced from wastewater treatment plants continue to create environmental problems in terms of volume and method of valorization. Thermal treatment of sewage sludge is considered as an attractive method in reducing sludge volume which at the same time produces reusable by-products. This paper deals with the first step of activated carbon production from sewage sludge, the carbonization step. Experiments are carried out on viscous liquid sludge and limed sludge by varying carbonization temperature and heating rate. The results show that carbonized residue properties are interesting for activated carbon production.


2012 ◽  
Vol 47 (11) ◽  
pp. 1678-1686 ◽  
Author(s):  
Paramasivam Sivapatham ◽  
Mariel C. Potts ◽  
Jeffrey A. Delise ◽  
Kenneth S. Sajwan ◽  
Ashok K. Alva ◽  
...  

2012 ◽  
Vol 65 (9) ◽  
pp. 1583-1590 ◽  
Author(s):  
K. Czerwionka ◽  
J. Makinia ◽  
M. Kaszubowska ◽  
J. Majtacz ◽  
M. Angowski

In this study, by-products from alcohol production were examined in terms of their potential application as external carbon sources for enhancing denitrification in biological nutrient removal systems. Three types of batch tests were used to compare the effects of the distillery by-products, such as fusel oil, syrup and reject water, on the non-acclimated activated sludge. Much higher nitrate utilization rates (NURs) were observed for the latter two carbon sources. In the conventional NUR measurements (one-phase experiments), the observed NURs with syrup and reject water were 3.2–3.3 g N/(kg VSS h) compared with 1.0 g N/(kg VSS h) obtained for fusel oils from two different distilleries. When the carbon sources were added at the beginning of the anoxic phase preceded by an anaerobic phase (two-phase experiments), the NURs were 4.2 g N/(kg VSS h) (syrup and reject water) and 2.4–2.7 g N/(kg VSS h) (fusel oils). The heterotrophic yield coefficient, determined based on the conventional OUR measurements, varied in a relatively narrow range (0.72–0.79 g COD/g COD) for all the examined carbon sources. Due to advantageous composition (much higher COD concentrations and COD/N ratios), fusel is a preferred carbon source for practical handling in full-scale wastewater treatment plants.


Sign in / Sign up

Export Citation Format

Share Document