scholarly journals Characteristics of Disinfection By-products in Effluents from Wastewater Treatment Plants in Kyoto City

2021 ◽  
Vol 44 (4) ◽  
pp. 103-114
Author(s):  
Ko HOSODA ◽  
Toshiharu SEGAWA
1996 ◽  
Vol 33 (3) ◽  
pp. 119-130 ◽  
Author(s):  
Allen C. Chao ◽  
Sergio J. de Luca ◽  
Carlos N. Idle

Studies concerning the treatment, stabilization and final disposal of biosolids, one of the by-products of wastewater treatment, in environmental recovery, have been intensified by the sanitary and environmental effects of land disposal. The careful assessment of biosolid quality shows that, when appropriately managed, the environmental risks of their uses can be minimized by chemical stabilization, and biosolids could even be used as fertilizer and soil conditioner. A research study of biosolid stabilization was performed using lime as a standard process compared to potassium ferrate (VI). The chances of leaching and solubilization of metals were tested, simulating conditions for disposal in the environment. The sanitary effectiveness in terms of pathogens (bacteria, fungi and helminth eggs) were also evaluated. Experiments were performed on the lime and ferrate(VI) treatment of compounds such as ammonia, nitrate, soluble sulphides, and total sulphates, indicators of odouriferous offensive compounds which might occasionally prevent some uses of the solids, and the results are presented in this paper. Wastewater Treatment Plants emit offensive odours generated during the sewage treatment process, as well as during the treatment and the management of biosolids. This occurs in the drying beds and the spreading of biosolids on land, due to the high concentrations of sulphur compounds, nitrogen compounds, acids and organic compounds (aldehydes and ketones). The potassium ferrate(VI) utilized in the research is a powerful oxidizing agent throughout the pH scale, with the advantage of not generating by-products which will cause toxicity or mutagenicity (DE LUCA, 1981). The ion ferrate(VI) has greater oxidizing power than permanganate, e.g., it oxidizes reduced sulfur forms to sulphate, ammonia to nitrate, hypochlorite to chlorite and chlorite to chlorate(DE LUCA et al., 1992; CHAO et al., 1992). This paper shows that, as expected, the potassium ferrate (VI) treatment replaces several chemical products utilized for odour control of sludges, mainly aggressive odours caused by ammonia and sulphides, through the formation of precipitates with iron compounds. Ferrate (VI) has often been shown to destroy soluble sulphides, transforming them into sulphate. The generation of oxygen in the decomposition of ferrate(VI) increases its oxidizing power. Ferrate(VI) applied to sludges also has the double effect of transforming ammonia into nitrates, such that this product takes the place of sulphates, acting as an electron acceptor, thus preventing the development of further odours when biosolids are utilized.


2004 ◽  
Vol 49 (1) ◽  
pp. 139-146 ◽  
Author(s):  
S. Rio ◽  
C. Faur-Brasquet ◽  
L. Le Coq ◽  
D. Lecomte ◽  
P. Le Cloirec

Sewage sludges produced from wastewater treatment plants continue to create environmental problems in terms of volume and method of valorization. Thermal treatment of sewage sludge is considered as an attractive method in reducing sludge volume which at the same time produces reusable by-products. This paper deals with the first step of activated carbon production from sewage sludge, the carbonization step. Experiments are carried out on viscous liquid sludge and limed sludge by varying carbonization temperature and heating rate. The results show that carbonized residue properties are interesting for activated carbon production.


2012 ◽  
Vol 65 (9) ◽  
pp. 1583-1590 ◽  
Author(s):  
K. Czerwionka ◽  
J. Makinia ◽  
M. Kaszubowska ◽  
J. Majtacz ◽  
M. Angowski

In this study, by-products from alcohol production were examined in terms of their potential application as external carbon sources for enhancing denitrification in biological nutrient removal systems. Three types of batch tests were used to compare the effects of the distillery by-products, such as fusel oil, syrup and reject water, on the non-acclimated activated sludge. Much higher nitrate utilization rates (NURs) were observed for the latter two carbon sources. In the conventional NUR measurements (one-phase experiments), the observed NURs with syrup and reject water were 3.2–3.3 g N/(kg VSS h) compared with 1.0 g N/(kg VSS h) obtained for fusel oils from two different distilleries. When the carbon sources were added at the beginning of the anoxic phase preceded by an anaerobic phase (two-phase experiments), the NURs were 4.2 g N/(kg VSS h) (syrup and reject water) and 2.4–2.7 g N/(kg VSS h) (fusel oils). The heterotrophic yield coefficient, determined based on the conventional OUR measurements, varied in a relatively narrow range (0.72–0.79 g COD/g COD) for all the examined carbon sources. Due to advantageous composition (much higher COD concentrations and COD/N ratios), fusel is a preferred carbon source for practical handling in full-scale wastewater treatment plants.


2011 ◽  
Vol 63 (5) ◽  
pp. 1018-1031 ◽  
Author(s):  
G. Venkatesh ◽  
Helge Brattebø

Wastewater treatment plants, while performing the important function of treating wastewater to meet the prescribed discharge standards, consume energy and a variety of chemicals. This paper analyses the consumption of energy and chemicals by wastewater treatment plants in Oslo over eight years, and their potential environmental impacts. Global warming and acidification were the dominant impacts for chemicals and energy, respectively. Avoided impacts due to usable by-products – sludge, ammonium nitrate and biogas – play a key role in shrinking the environmental footprint of the wastewater plants. The scope for decreasing this footprint by streamlining energy and chemicals consumption is limited, however, considering that over 70% of the impact is accounted for by the eutrophication potential (thanks to the nitrogen and phosphorus which is discharged to the sink) of the treated effluent wastewater.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3551
Author(s):  
Jae-Mee Lee ◽  
Rosa Busquets ◽  
In-Cheol Choi ◽  
Sung-Ho Lee ◽  
Jong-Kyu Kim ◽  
...  

Wastewater treatment plants (WWTPs) have been identified as main contributors to releasing microfibres into the environment, however, WWTPs do not have microfibre-targeting technologies. In this study, photocatalysis is evaluated as a potential technology to treat microfibres in WWTPs by studying the degradation of polyamide 66 (PA66) microfibres using ultraviolet (UV) and titanium dioxide (TiO2). PA66 microfibres suspended in deionised water were exposed to different combinations of UV and TiO2. The degradation of the PA66 microfibres was monitored by changes in mass, carbonyl index and morphology using microbalance, infrared spectroscopy, and scanning electron microscopy. The formation of by-products from the degradation of the fibres was evaluated by measuring the chemical oxygen demand (COD) of the treated water. The degradation efficiency was optimised under UVC with a dose of 100 mg TiO2/L. Under these conditions, the PA66 microfibres presented a 97% mass loss within 48 h. The photocatalytic conditions applied generated a relatively low level of by-products (<10 mg/L of COD). Therefore, photocatalysis with TiO2 an UVC could potentially be a feasible technology to treat microfibres in WWTPs, although more investigation is required to establish if this treatment leads to the formation of nanofibres. Further work is needed to translate the present optimised conditions to WWTPs.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


Sign in / Sign up

Export Citation Format

Share Document