scholarly journals Efficient simultaneous removal of heavy metals and polychlorobiphenyls from a polluted industrial site by washing the soil with natural humic surfactants

Author(s):  
Alessandro Piccolo ◽  
Antonio De Martino ◽  
Francesco Scognamiglio ◽  
Roberto Ricci ◽  
Riccardo Spaccini

AbstractWe evaluated the effectiveness of natural organic surfactants such as humic acids (HA) from lignite to simultaneously wash heavy metals (HM) and polychlorobiphenyls (PCB) from a heavily contaminated industrial soil of northern Italy. Supramolecular HA promote in solution a micelle-like structure, where recalcitrant apolar organic xenobiotics are repartitioned from surfaces of soil particles during soil washing process. Concomitantly, the HA acidic functional groups enable a simultaneous complexation of HM. A single soil washing with HA removed 68 and 75% of PCB congeners for 1:1 and 10:1 solution/soil ratios, respectively. The same HA washing simultaneously and efficiently removed a cumulative average of 47% of total HM, with a maximum of 57 and 67% for Hg and Cu, respectively. We showed that washing a highly polluted soil with HA solution not only is an effective and rapid soil remediation technique but also simultaneously removes both HM and persistent organic pollutants (POP). Soil washing by humic biosurfactants is also a sustainable and eco-friendly technology, since, contrary to synthetic surfactants and solvents used in conventional washing techniques, it preserves soil biodiversity, promotes natural attenuation of unextracted POP, and accelerates further soil reclamation techniques such as bio- or phytoremediation.

Author(s):  
Kanghee Cho ◽  
Eunji Myung ◽  
Hyunsoo Kim ◽  
Cheonyoung Park ◽  
Nagchoul Choi ◽  
...  

In this study, we investigated the feasibility of using a solution of sulfuric acid and phosphoric acid as an extraction method for soil-washing to remove Cu, Pb, Zn, and As from contaminated soil. We treated various soil particles, including seven fraction sizes, using sulfuric acid. In addition, to improve Cu, Pb, Zn, and As removal efficiencies, washing agents were compared through batch experiments. The results showed that each agent behaved differently when reacting with heavy metals (Cu, Pb, and Zn) and As. Sulfuric acid was more effective in extracting heavy metals than in extracting As. However, phosphoric acid was not effective in extracting heavy metals. Compared with each inorganic acid, As removal from soil by washing agents increased in the order of sulfuric acid (35.81%) < phosphoric acid (62.96%). Therefore, an enhanced mixture solution using sulfuric acid and phosphoric acid to simultaneously remove heavy metals and As from contaminated soils was investigated. Sulfuric acid at 0.6 M was adopted to combine with 0.6 M phosphoric acid to obtain the mixture solution (1:1) that was used to determine the effect for the simultaneous removal of both heavy metals and As from the contaminated soil. The removal efficiencies of As, Cu, Pb, and Zn were 70.5%, 79.6%, 80.1%, and 71.2%, respectively. The combination of sulfuric acid with phosphoric acid increased the overall As and heavy metal extraction efficiencies from the contaminated soil samples. With the combined effect of dissolving oxides and ion exchange under combined washings, the removal efficiencies of heavy metals and As were higher than those of single washings.


2016 ◽  
Vol 75 (10) ◽  
Author(s):  
Deok Hyun Moon ◽  
Jae-Woo Park ◽  
Agamemnon Koutsospyros ◽  
Kyung Hoon Cheong ◽  
Yoon-Young Chang ◽  
...  

Author(s):  
Hyunsoo Kim ◽  
Kanghee Cho ◽  
Oyunbileg Purev ◽  
Nagchoul Choi ◽  
Jaewon Lee

Based on the features of hydrodynamic cavitation, in this study, we developed a washing ejector that utilizes a high-pressure water jet. The cavitating flow was utilized to remove fine particles from contaminated soil. The volume of the contaminants and total metal concentration could be correlated to the fine-particle distribution in the contaminated soil. These particles can combine with a variety of pollutants. In this study, physical separation and soil washing as a two-step soil remediation strategy were performed to remediate contaminated soils from the smelter. A washing ejector was employed for physical separation, whereas phosphoric acid was used as the washing agent. The particles containing toxic heavy metals were composed of metal phase encapsulated in phyllosilicates, and metal phase weakly bound to phyllosilicate surfaces. The washing ejector involves the removal of fine particles bound to coarse particles and the dispersion of soil aggregates. From these results we determined that physical separation using a washing ejector was effective for the treatment of contaminated soil. Phosphoric acid (H3PO4) was effective in extracting arsenic from contaminated soil in which arsenic was associated with amorphous iron oxides. Thus, the obtained results can provide useful information and technical support for field soil washing for the remediation of soil contaminated by toxic heavy metals through emissions from the mining and ore processing industries.


Sign in / Sign up

Export Citation Format

Share Document