Reduction of sulfur oxides emissions via adsorptive desulfurization of transportation fuels using novel silica-based adsorbent

Author(s):  
Heba H. El-Maghrabi ◽  
Rasha S. Mohamed ◽  
Ahmed A. Younes
Author(s):  
Saddam A. AL Hammadi

The ultra-low sulfur diesel (ULSD) is required to comply with stricter government policy on low sulfur content of transportation fuels. Better knowledge of the different factors that concern deep desulfurization of fuels is necessary to achieve ultra-low sulfur content and cheaper way of producing ULSD. Both the capital and operating cost of the adsorptive desulfurization process is cheaper compare to the conventional hydroprocessing. In the future, the need to produce more volume of fuels with very low sulphur content from low-grade feedstocks like heavy oil and light cycle oil in order to meet up with the global demand for sulphur-free fuels is pertinent. Several on-going researches are pointing to the use of adsorbents for removal of sulfur compounds from hydrocarbon refining stream. In this chapter, varieties of carbon nanomaterials suitable for adsorptive desulfurization are discussed. If the active lifetime, where the capacity of the adsorbents are adequate, the approach is practically feasible for commercial application.


2019 ◽  
Vol 4 (8) ◽  
pp. 1357-1386 ◽  
Author(s):  
Kevin X. Lee ◽  
Julia A. Valla

Adsorptive desulfurization using modified Y zeolite is an efficient process for the removal of sulfur from transportation fuels.


2017 ◽  
Vol 36 (3-4) ◽  
pp. 953-966 ◽  
Author(s):  
Yu Yin ◽  
Zhi-Hao Wen ◽  
Xiao-Qin Liu ◽  
Ai-Hua Yuan ◽  
Lei Shi

Adsorption is one of the most promising methods for desulfurization of transportation fuels, due to the strategy which enables removal of organic sulfur compounds to be conducted at ambient conditions with high efficiency. Adsorbent is the key to the adsorptive performance. Both π complexation and direct sulfur metal bonds are efficient methods for adsorptive desulfurization. For construction of these bonds, it is necessary to introduce active metal species on the support. In this work, Ce(NO3)2 was directly introduced into the as-synthesized SBA-15, and high dispersion of CeO2 nanoparticles was obtained. With the loading content of 12–46 wt%, the particle sizes of the CeO2 NPs are in the range of 4.4–6.3 nm. The good dispersion status of CeO2 nanoparticles is contributed to the template P123 preserved in as-synthesized SBA-15, which provides a confined space for the dispersion of CeO2 nanoparticles. However, the large CeO2 particles (7.0 nm) are formed for the sample originated from template-free SBA-15. We also demonstrate that the adsorptive performance of SBA-15 is enhanced with the modification of CeO2 nanoparticles. Besides, the performances of CeO2 nanoparticle-modified samples stay in step with the dispersion status of the CeO2 nanoparticles.


Author(s):  
Tawfik A. Saleh ◽  
Taye Damola Shuaib ◽  
Gaddafi Ibrahim Danmaliki ◽  
Mohammed A. Al-Daous

The special interest in ultra-low sulfur diesel (ULSD) is informed by the need to comply with the strict government policy on low sulfur content of transportation fuels. Better knowledge of different factors that concern deep desulfurization of fuels is important to achieve ultra-low sulfur fuels and cheaper way of producing ULSD. Both the capital and operating cost of the adsorptive desulfurization process is cheaper compare to the conventional hydroprocessing. The need to produce more volume of fuel such as diesel with very low sulfur content from low grade feed stocks like heavy oil and light cycle oil (LCO) in order to meet up with the global demand for sulfur-free fuels is pertinent. Several on-going researches are pointing to the use of adsorbents for removal of sulfur compounds from the hydrocarbon refining stream. In this chapter, varieties of carbon nanomaterials suitable for adsorptive desulfurization are discussed. The approach is feasible for commercial applications with any adsorbent of an adequate lifetime of activity as well as high capacity.


Author(s):  
Saddam A. AL Hammadi

The ultra-low sulfur diesel (ULSD) is required to comply with stricter government policy on low sulfur content of transportation fuels. Better knowledge of the different factors that concern deep desulfurization of fuels is necessary to achieve ultra-low sulfur content and cheaper way of producing ULSD. Both the capital and operating cost of the adsorptive desulfurization process is cheaper compare to the conventional hydroprocessing. In the future, the need to produce more volume of fuels with very low sulphur content from low-grade feedstocks like heavy oil and light cycle oil in order to meet up with the global demand for sulphur-free fuels is pertinent. Several on-going researches are pointing to the use of adsorbents for removal of sulfur compounds from hydrocarbon refining stream. In this chapter, varieties of carbon nanomaterials suitable for adsorptive desulfurization are discussed. If the active lifetime, where the capacity of the adsorbents are adequate, the approach is practically feasible for commercial application.


Author(s):  
S. V. Plashykhin ◽  
T. V. Bojko ◽  
D. N. Skladannyy ◽  
Ju. A. Zaporozhets ◽  
Artem S. Safiants

Sign in / Sign up

Export Citation Format

Share Document