FLUE GAS PURIFICATION FROM SULFUR OXIDES AND ASH DURING SOLID FUEL COMBUSTION IN LOW-POWER BOILERS

Author(s):  
S. V. Plashykhin ◽  
T. V. Bojko ◽  
D. N. Skladannyy ◽  
Ju. A. Zaporozhets ◽  
Artem S. Safiants
2020 ◽  
Vol 35 ◽  
pp. 6-14
Author(s):  
M. P. Senchuk

Different constructive schemes of solid fuel combustion in heating boilers up to 100 kW with the analysis of their efficiency depending on the quality of the burned solid fuel are considered. It is established that low-power solid fuel boilers with various types of combustion devices depending on the characteristics of the burned fuel and the accepted level of service are used in heat supply systems of premises, buildings and structures: from simple furnaces with manual maintenance to automated combustion devices of complex design. Mostly pre-prepared high-quality fuel is used for combustion: fuel pellets, briquettes, high-quality coal, the high cost of which significantly increases operating costs. In order to reduce capital and operating costs, it is advisable to introduce relatively inexpensive models of low-power heating boilers with an acceptable level of mechanization of combustion technology of cheap fuel, including local, with minimal costs for its preparation. The design of a heating water boiler with a semi-mechanical furnace and a technological scheme of combustion is proposed, which combines the processes of drying, gasification and combustion of fuel in a shaft with a clamping grate and combustion of coke in a layer on a moving grate. It is noted that the periodic supply of fuel in the furnace with a moving grate is maintained the stability of the combustion process in the combustion chamber, in the period between cleaning of ash and slag, without significant changes in the composition of above-layer gases. Due to the smooth movement of the next portion of hot coke from the fuel shaft to the combustion chamber on the rotating grate, conditions are created to maintain the uniformity of the boiler with the normative indicators. A reduction in harmful emissions in the exhaust gases was achieved during the combustion of the reaction fuel by passing a secondary blast of air through a collector and directing it to the combustion zone of light substances at the outlet of the clamping grate. Analytical equations for determining the size of the combustion zone according to the regime and design parameters of the combustion process are given. The efficiency of application of the combined (shaft-layer) technological scheme in low-power boilers was tested during testing of combustion of different quality coal in a semi-mechanical furnace with a rotating grate in the electric coal boiler with a heat output of 50 kW for railway carriages.


2016 ◽  
Vol 23 (4) ◽  
pp. 593-604 ◽  
Author(s):  
Jan Kříž ◽  
Jan Loskot ◽  
Vladimír Štěpánek ◽  
Lidmila Hyšplerová ◽  
Daniel Jezbera ◽  
...  

Abstract Tightening of norms for air protection leads to a development of new and significantly more effective techniques for removing particulate matter, SOx and NOx from flue gas which originates from large solid fuel combustion. Recently, it has been found that combinations of these environmental technologies can also lead to the reduction of mercury emissions from coal power plants. Now the greatest attention is paid especially to the coal power plant in Opatovice nad Labem, close to Hradec Kralove. Its system for flue gas dedusting was replaced by a modern type of cloth fabric filter with the highest particle separation efficiency which belongs to the category of BAT. Using this technology, together with modernization of the desulphurisation device and increasing of nitrogen oxides removal efficiency, leads also to a reduction of mercury emissions from this power plant. The University of Hradec Kralove, the Opole University and EMPLA Hradec Kralove successfully cooperate in the field of toxic metals biomonitoring almost 20 years. In the Czech-Polish border region, comprehensive biomonitoring of mercury in bioindicators Xerocomus badius in 9 long-term monitored reference points is done. The values of mercury concentration measured in 2012 and 2016 were compared with values computed by a dispersion model SYMOS′97 (updated 2014). Thanks to modern methods of dedusting and desulphurisation, emissions of mercury from this large coal power plant are now smaller than before and that the downward trends continues. The results indicate that Xerocomus badius is a suitable bioindicator for a long-term monitoring of changes in mercury imissions in this forested border region. This finding is significant because it shows that this region is suitable for leisure, recreation, and rehabilitation.


2008 ◽  
Vol 39 (1) ◽  
pp. 65-78
Author(s):  
Yu. S. Teplitskii ◽  
V. A. Borodulya ◽  
V. I. Kovenskii ◽  
E. P. Nogotov

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2174
Author(s):  
Marta Marczak-Grzesik ◽  
Stanisław Budzyń ◽  
Barbara Tora ◽  
Szymon Szufa ◽  
Krzysztof Kogut ◽  
...  

The research presented by the authors in this paper focused on understanding the behavior of mercury during coal combustion and flue gas purification operations. The goal was to determine the flue gas temperature on the mercury emissions limits for the combustion of lignites in the energy sector. The authors examined the process of sorption of mercury from flue gases using fine-grained organic materials. The main objectives of this study were to recommend a low-cost organic adsorbent such as coke dust (CD), corn straw char (CS-400), brominated corn straw char (CS-400-Br), rubber char (RC-600) or granulated rubber char (GRC-600) to efficiently substitute expensive dust-sized activated carbon. The study covered combustion of lignite from a Polish field. The experiment was conducted at temperatures reflecting conditions inside a flue gas purification installation. One of the tested sorbents—tire-derived rubber char that was obtained by pyrolysis—exhibited good potential for Hg0 into Hg2+ oxidation, resulting in enhanced mercury removal from the flue. The char characterization increased elevated bromine content (mercury oxidizing agent) in comparison to the other selected adsorbents. This paper presents the results of laboratory tests of mercury sorption from the flue gases at temperatures of 95, 125, 155 and 185 °C. The average mercury content in Polish lignite was 465 μg·kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 17.8 µg·m−3. The study analyzed five low-cost sorbents with the average achieved efficiency of mercury removal from 18.3% to 96.1% for lignite combustion depending on the flue gas temperature.


Author(s):  
Bosen Wang ◽  
Ali Shamooni ◽  
Oliver T. Stein ◽  
Andreas Kronenburg ◽  
Andreas M. Kempf ◽  
...  

2013 ◽  
Vol 12 (1) ◽  
Author(s):  
Karen S Galea ◽  
J Fintan Hurley ◽  
Hilary Cowie ◽  
Amy L Shafrir ◽  
Araceli Sánchez Jiménez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document