scholarly journals Wet deposition of total dissolved nitrogen in Indo-Gangetic Plain (India)

Author(s):  
Manisha Mishra ◽  
Umesh Chandra Kulshrestha
2021 ◽  
Vol 102 ◽  
pp. 37-52 ◽  
Author(s):  
Hemraj Bhattarai ◽  
Lekhendra Tripathee ◽  
Shichang Kang ◽  
Chhatra Mani Sharma ◽  
Pengfei Chen ◽  
...  

2021 ◽  
Author(s):  
Manisha Mishra ◽  
Umesh Chandra Kulshrestha

Abstract Very limited information on the magnitude and environmental impacts of both inorganic as well as organic forms of Nitrogen (N) wet deposition is available in India. Molar concentrations of inorganic (NH4+ and NO3−) and organic N in rainwater were monitored at three different land-use sites in Indo-Gangetic Plain (IGP) during the monsoon period (June-September) of 2017. It has been observed that dissolved organic N (DON) contributed significantly to the total dissolved N (TDN) ranging from 5–60%. Dissolved inorganic N (DIN = NH4+ + NO3−) concentration was recorded as high as 221.0 µmol L− 1 at urban site to as low as 65.9 µmol L− 1 at the rural site. A similar pattern was also observed for DON. NH4+ contribution to TDN had the order: urban megacity (65%) > urban (70%) > rural (75%). Agriculture and animal husbandry are the primary sources of NH4+ emissions in the rural site. However, NO3− has shown a contrasting trend at these sites (25%, 15% and 8%, respectively). Wet deposition fluxes of atmospheric TDN was observed to be higher at urban sites. This can attributed to a variety of local sources such as vehicular emission, microbial emissions, biomass burning, human excreta due to higher population density, and transportation from surrounding areas, as observed from concentration weighted trajectories (CWT) model and cluster analysis. Upwind region of IGP has experienced major influence of air mass transported from agriculturally rich northwest part of India. However, both the downwind sites have experienced by-and-large the influence of south-westerly air-masses originated over the Arabian Sea. Study has found that the DON contributes significantly to TDN and need to be included for budget assessment in South Asia.


2020 ◽  
Vol 27 (10) ◽  
pp. 10617-10628 ◽  
Author(s):  
Pengfei Chen ◽  
Shichang Kang ◽  
Lekhendra Tripathee ◽  
Arnico K. Panday ◽  
Maheswar Rupakheti ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 402
Author(s):  
Rama Kant Dubey ◽  
Pradeep Kumar Dubey ◽  
Rajan Chaurasia ◽  
Ch Srinivasa Rao ◽  
Purushothaman Chirakkuzhyil Abhilash

Global agricultural production is accountable for the emission of ~30% of greenhouse gases. Therefore, the wide-scale adoptions of low-input, soil-friendly, and resource-conserving agronomic practices are imperative for the ‘planet healthy food production’ and also for reducing the carbon emissions from agricultural soil. In this context, the present study aimed to analyze the impacts of integrated agronomic interventions i.e., the application of arbuscular mycorrhizal fungi (AMF) + reduced tillage (RT), biochar + RT, and AMF + biochar + RT, on spatiotemporal variations in soil-quality and soil-sustainability indicators, including microbial and soil respiration, in the Indo-Gangetic Plain (IGP) of North India. For this, field experiments on the above-mentioned agronomic interventions were employed using three different staple crops (Zea mays, Vigna mungo, and Brassica juncea) growing in three different agro-climatic zones of IGP (Varanasi, Sultanpur, and Gorakhpur) in a randomized block design. Periodic data collection was done to analyze the changes in physiochemical, biological, and biochemical properties of the soil, and statistical analyses were done accordingly. Irrespective of the sites, the experimental results proved that the integrated application of AMF + biochar + RT in V. mungo resulted in the highest soil organic carbon (i.e., 135% increment over the control) and microbial biomass carbon (24%), whereas the same application (i.e., AMF + biochar + RT) in Z. mays had the maximum reduction in microbial (32%) and soil (44%) respiration. On the other hand, enhanced occurrence of glomalin activity (98%) was noted in Z. mays cropping for all the sites. Significant negative correlation between soil respiration and glomalin activity under AMF + biochar + RT (−0.85), AMF + RT (−0.82), and biochar + RT (−0.62) was an indication of glomalin’s role in the reduced rate of soil respiration. The research results proved that the combined application of AMF + biochar + RT was the best practice for enhancing soil quality while reducing respiration. Therefore, the development of suitable packages of integrated agronomic practices is essential for agricultural sustainability.


Sign in / Sign up

Export Citation Format

Share Document